A climatology of thermodynamic vs. dynamic Arctic wintertime sea ice thickness effects during the CryoSat-2 era

Author:

Anheuser JamesORCID,Liu Yinghui,Key Jeffrey R.

Abstract

Abstract. Thermodynamic and dynamic sea ice thickness processes are affected by differing mechanisms in a changing climate. Independent observational datasets of each are essential for model validation and accurate projections of future sea ice conditions. Here, we present a monthly, Arctic-basin-wide, and 25 km resolution Eulerian estimation of thermodynamic and dynamic effects on wintertime sea ice thickness from 2010–2021. Estimates of thermodynamic growth rate are determined by coupling passive microwave-retrieved snow–ice interface temperatures to a simple sea ice thermodynamic model, total growth is calculated from a weekly Alfred Wegener Institute (AWI) European Space Agency (ESA) CryoSat-2 and Soil Moisture and Ocean Salinity (SMOS) combination product (CS2SMOS), and dynamic effects are calculated as their difference. The dynamic effects are further separated into advection and residual effects using a sea ice motion dataset. Our results show new detail in these fields and, when summed to a basin-wide or regional scale, are in line with previous studies. Across the Arctic, dynamic effects are negative and about one-fourth the magnitude of thermodynamic growth. Thermodynamic growth varies from less than 0.1 m per month in the central Arctic to greater than 0.3 m per month in the seasonal ice zones. High positive dynamic effects of greater than 0.1 m per month, twice that of thermodynamic growth or more in some areas, are found north of the Canadian Arctic Archipelago, where the Transpolar Drift and Beaufort Gyre deposit ice. Strong negative dynamic effects of less than −0.2 m per month are found where the Transpolar Drift originates, nearly equal to and opposite the thermodynamic effects in these regions. Monthly results compare well with a recent study of the dynamic and thermodynamic effects on sea ice thickness along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift track during the winter of 2019–2020. Couplets of deformation and advection effects with opposite signs are common across the Arctic, with positive advection effects and negative deformation effects found in the Beaufort Sea and negative advection effects and positive deformation effects found in most other regions. The seasonal cycle shows residual deformation effects and overall dynamic effects increasing as the winter season progresses.

Funder

National Oceanic and Atmospheric Administration

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3