Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic

Author:

Durand CharlotteORCID,Finn Tobias SebastianORCID,Farchi AlbanORCID,Bocquet MarcORCID,Boutin GuillaumeORCID,Ólason EinarORCID

Abstract

Abstract. A novel generation of sea-ice models with elasto-brittle rheologies, such as neXtSIM, can represent sea-ice processes with an unprecedented accuracy at the mesoscale for resolutions of around 10 km. As these models are computationally expensive, we introduce supervised deep learning techniques for surrogate modeling of the sea-ice thickness from neXtSIM simulations. We adapt a convolutional U-Net architecture to an Arctic-wide setup by taking the land–sea mask with partial convolutions into account. Trained to emulate the sea-ice thickness at a lead time of 12 h, the neural network can be iteratively applied to predictions for up to 1 year. The improvements of the surrogate model over a persistence forecast persist from 12 h to roughly 1 year, with improvements of up to 50 % in the forecast error. Moreover, the predictability gain for the sea-ice thickness measured against the daily climatology extends to over 6 months. By using atmospheric forcings as additional input, the surrogate model can represent advective and thermodynamical processes which influence the sea-ice thickness and the growth and melting therein. While iterating, the surrogate model experiences diffusive processes which result in a loss of fine-scale structures. However, this smoothing increases the coherence of large-scale features and thereby the stability of the model. Therefore, based on these results, we see huge potential for surrogate modeling of state-of-the-art sea-ice models with neural networks.

Funder

Schmidt Family Foundation

Grand Équipement National De Calcul Intensif

Publisher

Copernicus GmbH

Reference81 articles.

1. Amodei, M. and Stein, J.: Deterministic and fuzzy verification methods for a hierarchy of numerical models, Meteorol. Appl., 16, 191–203, https://doi.org/10.1002/met.101, 2009. a

2. Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., Law, S., Jones, D. C., Wilkinson, J., Phillips, T., Byrne, J., Tietsche, S., Sarojini, B. B., Blanchard-Wrigglesworth, E., Aksenov, Y., Downie, R., and Shuckburgh, E.: Seasonal Arctic sea ice forecasting with probabilistic deep learning, Nat. Commun., 12, 5124, https://doi.org/10.1038/s41467-021-25257-4, 2021. a

3. Balan-Sarojini, B., Tietsche, S., Mayer, M., Balmaseda, M., Zuo, H., de Rosnay, P., Stockdale, T., and Vitart, F.: Year-round impact of winter sea ice thickness observations on seasonal forecasts, The Cryosphere, 15, 325–344, https://doi.org/10.5194/tc-15-325-2021, 2021. a

4. Bernard, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Sommer, J. L., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and Cuevas, B. D.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. a

5. Beucler, T., Pritchard, M., Rasp, S., Ott, J., Baldi, P., and Gentine, P.: Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems, Phys. Rev. Lett., 126, 098302, https://doi.org/10.1103/physrevlett.126.098302, 2021. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3