Low-carbon energy generates public health savings in California

Author:

Zapata Christina B.,Yang Chris,Yeh SoniaORCID,Ogden Joan,Kleeman Michael J.

Abstract

Abstract. California's goal to reduce greenhouse gas (GHG) emissions to a level that is 80 % below 1990 levels by the year 2050 will require adoption of low-carbon energy sources across all economic sectors. In addition to reducing GHG emissions, shifting to fuels with lower carbon intensity will change concentrations of short-lived conventional air pollutants, including airborne particles with a diameter of less than 2.5 µm (PM2.5) and ozone (O3). Here we evaluate how business-as-usual (BAU) air pollution and public health in California will be transformed in the year 2050 through the adoption of low-carbon technologies, expanded electrification, and modified activity patterns within a low-carbon energy scenario (GHG-Step). Both the BAU and GHG-Step statewide emission scenarios were constructed using the energy–economic optimization model, CA-TIMES, that calculates the multi-sector energy portfolio that meets projected energy supply and demand at the lowest cost, while also satisfying scenario-specific GHG emissions constraints. Corresponding criteria pollutant emissions for each scenario were then spatially allocated at 4 km resolution to support air quality analysis in different regions of the state. Meteorological inputs for the year 2054 were generated under a Representative Concentration Pathway (RCP) 8.5 future climate. Annual-average PM2.5 and O3 concentrations were predicted using the modified emissions and meteorology inputs with a regional chemical transport model. In the final phase of the analysis, mortality (total deaths) and mortality rate (deaths per 100 000) were calculated using established exposure-response relationships from air pollution epidemiology combined with simulated annual-average PM2.5 and O3 exposure. Net emissions reductions across all sectors are −36 % for PM0.1 mass, −3.6 % for PM2.5 mass, −10.6 % for PM2.5 elemental carbon, −13.3 % for PM2.5 organic carbon, −13.7 % for NOx, and −27.5 % for NH3. Predicted deaths associated with air pollution in 2050 dropped by 24–26 % in California (1537–2758 avoided deaths yr−1) in the climate-friendly 2050 GHG-Step scenario, which is equivalent to a 54–56 % reduction in the air pollution mortality rate (deaths per 100 000) relative to 2010 levels. These avoided deaths have an estimated value of USD 11.4–20.4 billion yr−1 based on the present-day value of a statistical life (VSL) equal to USD 7.6 million. The costs for reducing California GHG emissions 80 % below 1990 levels by the year 2050 depend strongly on numerous external factors such as the global price of oil. Best estimates suggest that meeting an intermediate target (40 % reduction in GHG emissions by the year 2030) using a non-optimized scenario would reduce personal income by USD 4.95 billion yr−1 (−0.15 %) and lower overall state gross domestic product by USD 16.1 billion yr−1 (−0.45 %). The public health benefits described here are comparable to these cost estimates, making a compelling argument for the adoption of low-carbon energy in California, with implications for other regions in the United States and across the world.

Funder

U.S. Environmental Protection Agency

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference40 articles.

1. California Department of Finance, Demographic Research Unit P-2: State and County Population Projections – Race/Ethnicity and 5-Year Age Groups, 2010 through 2060, W. Schwarm. Sacramento, CA, 2014.

2. Carlton, A. G., Bhave P. V., Napelenok, S. L., Edney, E. O., Sarwar, G., Pinder, R. W., Pouliot, G. A., and Houyoux, M.: Model Representation of Secondary Organic Aerosol in CMAQv4.7, Environ. Sci. Technol., 44, 8553–8560, 2010.

3. Carter, W. P. L. and Heo, G.: Development of Revised SAPRC Aromatic Mechanisms, Center for Environmental Research and Technology, University of California, Riverside, California 92521, 2012.

4. Carter, W. P. L., Heo, G., Cocker D. R., and Nakao, S.: SOA Formation: Chamber Study and Model Development, Center for Environmental Research and Technology, University of California Riverside, California 92521, 2012.

5. Clack, C. T. M., Qvist, S. A., Apt, J., Bazilian, M., Brandt, A. R., Caldeira, K., Davis, S. J., Diakov, V., Handschy, M. A., Hines, P. D. H., Jaramillo, P., Kammen, D. M., Long, J. C. S., Morgan, M. G., Reed, A., Sivaram, V., Sweeney, J., Tynan, G. R., Victor, D. G., Weyant, J. P., and Whitacre, J. F.: Evaluation of a proposal for reliable low-cost grid power with 100 % wind, water, and solar, P. Natl. Acad. Sci. USA, 114, 6722–6727, 2017.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3