Evaluating the impact of blowing-snow sea salt aerosol on springtime BrO and O<sub>3</sub> in the Arctic

Author:

Huang Jiayue,Jaeglé Lyatt,Chen QianjieORCID,Alexander BeckyORCID,Sherwen TomásORCID,Evans Mat J.ORCID,Theys Nicolas,Choi Sungyeon

Abstract

Abstract. We use the GEOS-Chem chemical transport model to examine the influence of bromine release from blowing-snow sea salt aerosol (SSA) on springtime bromine activation and O3 depletion events (ODEs) in the Arctic lower troposphere. We evaluate our simulation against observations of tropospheric BrO vertical column densities (VCDtropo) from the GOME-2 (second Global Ozone Monitoring Experiment) and Ozone Monitoring Instrument (OMI) spaceborne instruments for 3 years (2007–2009), as well as against surface observations of O3. We conduct a simulation with blowing-snow SSA emissions from first-year sea ice (FYI; with a surface snow salinity of 0.1 psu) and multi-year sea ice (MYI; with a surface snow salinity of 0.05 psu), assuming a factor of 5 bromide enrichment of surface snow relative to seawater. This simulation captures the magnitude of observed March–April GOME-2 and OMI VCDtropo to within 17 %, as well as their spatiotemporal variability (r=0.76–0.85). Many of the large-scale bromine explosions are successfully reproduced, with the exception of events in May, which are absent or systematically underpredicted in the model. If we assume a lower salinity on MYI (0.01 psu), some of the bromine explosions events observed over MYI are not captured, suggesting that blowing snow over MYI is an important source of bromine activation. We find that the modeled atmospheric deposition onto snow-covered sea ice becomes highly enriched in bromide, increasing from enrichment factors of ∼5 in September–February to 10–60 in May, consistent with composition observations of freshly fallen snow. We propose that this progressive enrichment in deposition could enable blowing-snow-induced halogen activation to propagate into May and might explain our late-spring underestimate in VCDtropo. We estimate that the atmospheric deposition of SSA could increase snow salinity by up to 0.04 psu between February and April, which could be an important source of salinity for surface snow on MYI as well as FYI covered by deep snowpack. Inclusion of halogen release from blowing-snow SSA in our simulations decreases monthly mean Arctic surface O3 by 4–8 ppbv (15 %–30 %) in March and 8–14 ppbv (30 %–40 %) in April. We reproduce a transport event of depleted O3 Arctic air down to 40∘ N observed at many sub-Arctic surface sites in early April 2007. While our simulation captures 25 %–40 % of the ODEs observed at coastal Arctic surface sites, it underestimates the magnitude of many of these events and entirely misses 60 %–75 % of ODEs. This difficulty in reproducing observed surface ODEs could be related to the coarse horizontal resolution of the model, the known biases in simulating Arctic boundary layer exchange processes, the lack of detailed chlorine chemistry, and/or the fact that we did not include direct halogen activation by snowpack chemistry.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference116 articles.

1. Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J., Toohey, D. W., Toubin, C., von Glasow, R., Wren, S. N., and Yang, X.: Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012, 2012.

2. Alvarez-Aviles, L., Simpson, W. R., Douglas, T. A., Sturm, M., Perovich, D., and Domine, F.: Frost flower chemical composition during growth and its implications for aerosol production and bromine activation, J. Geophys. Res.-Atmos., 113, D21304, https://doi.org/10.1029/2008JD010277, 2008.

3. AMAP: AMAP Assessment 2011: Mercury in the Arctic, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 193 pp., available at: https://www.amap.no/documents/doc/amap-assessment-2011-mercury-in-the-arctic/90 (last access: 13 July 2018), 2011.

4. Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, 2013.

5. Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J., and Rasmussen, R. A.: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere, Nature, 334, 138–141, https://doi.org/10.1038/334138a0, 1988.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3