<i>E pluribus unum</i>*: ensemble air quality predictions

Author:

Galmarini S.ORCID,Kioutsioukis I.,Solazzo E.ORCID

Abstract

Abstract. In this study we present a novel approach for improving the air quality predictions using an ensemble of air quality models generated in the context of AQMEII (Air Quality Model Evaluation International Initiative). The development of the forecasting method makes use of modelled and observed time series (either spatially aggregated or relative to single monitoring stations) of ozone concentrations over different areas of Europe and North America. The technique considers the underlying forcing mechanisms on ozone by means of spectrally decomposed previsions. With the use of diverse applications, we demonstrate how the approach screens the ensemble members, extracts the best components and generates bias-free forecasts with improved accuracy over the candidate models. Compared to more traditional forecasting methods such as the ensemble median, the approach reduces the forecast error and at the same time it clearly improves the modelled variance. Furthermore, the result is not a mere statistical outcome depended on the quality of the selected members. The few individual cases with degraded performance are also identified and analysed. Finally, we show the extensions of the approach to other pollutants, specifically particulate matter and nitrogen dioxide, and provide a framework for its operational implementation. *One out of many

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference40 articles.

1. Delle Monache, L., Deng, X., Zhou, Y., and Stull, R.: Ozone ensemble forecasts: 1. A new ensemble design. J. Geophys. Res., 111, D05307, https://doi.org/10.1029/2005JD006310, 2006.

2. Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., Irwin, J., Rao, S. T., Scheffe, R., Schere, K., Steyn, D., and Venkatram, A.: A framework for evaluating regional-scale numerical photochemical modelling systems, Environ. Fluid Mech., 10, 471–489, 2010.

3. Galmarini, S., Michelutti, F., and Thunis, P.: Estimating the Contribution of Leonard and Cross Terms to the Subfilter Scale from Atmospheric Measurements, J. Atmos. Sci., 57, 2968, https://doi.org/10.1175/1520-0469(2000)0572.0.CO;2, 2000.

4. Galmarini, S., Bianconi, R., Bellasio, R., and Graziani, G.: Forecasting consequences of accidental releases from ensemble dispersion modelling, J. Environ. Radioact., 57, 203–219, 2001.

5. Galmarini, S., Bianconi, R., Klug, W., Mikkelsen, T., Addis, R., Andronopoulos, S., Astrup, P., Baklanov, A., Bartniki, J., Bartzis, J. C., Bellasio, R., Bompay, F., Buckley, R., Bouzom, M., Champion, H., D'Amours, R., Davakis, E., Eleveld, H., Geertsema, G. T., Glaab, H., Kollax, M., Ilvonen, M., Manning, A., Pechinger, U., Persson, C., Polreich, E., Potemski, S., Prodanova, M., Saltbones, J., Slaper, H., Sofiev, M. A., Syrakov, D., Sørensen, J. H., Van der Auwera, L., Valkama, I., and Zelazny, R.: Ensemble dispersion forecasting, Part 1: Concept, Approach and indicators, Atmos. Environ., 38, 4607–4617, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3