Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions
-
Published:2013-07-24
Issue:14
Volume:13
Page:7039-7052
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Sofiev M., Vankevich R., Ermakova T., Hakkarainen J.ORCID
Abstract
Abstract. The problem of characteristic vertical profile of smoke released from wildland fires is considered. A methodology for bottom-up evaluation of this profile is suggested and a corresponding global dataset is calculated. The profile estimation is based on: (i) a semi-empirical formula for plume-top height recently suggested by the authors, (ii) satellite observations of active wildland fires, and (iii) meteorological conditions evaluated for each fire using output of the numerical weather prediction model. Injection profiles of the plumes from all fires recorded globally from March 2000 till November 2012 are estimated with a time step of 1 h. The resulting 4-dimensional dataset is split into daytime and nighttime subsets. The subsets are projected onto a global grid with a resolution of 1° × 1° × 500 m, aggregated to a monthly level, and normalised by total emissions in each vertical column. Evaluation of the obtained dataset was performed in several ways. Firstly, the quality of the semi-empirical formula for plume-top computations was evaluated using updated MISR fire Plume Height Project data. Secondly, the upper percentiles of the profiles are compared with an independent dataset of space lidar CALIOP. Thirdly, the results are compared with the distribution suggested for AEROCOM modelling community. Finally, the inter-annual variations of the calculated profiles are estimated.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference48 articles.
1. Baklanov, A. and Grisogono, B.: Atmospheric boudnary layers. Nature, theory, and application to environmental modelling and security, Springer, Dubrovnik, 2007. 2. Briggs, G. A.: Plume rise predictions, in Lectures on air pollution and environmental impact analyses, 59–111, Boston, 1975. 3. CALIPSO: CALIPSO Quality Statements Lidar Level 3 Aerosol Profile Monthly Products Version Release: 1.00, 2011. 4. Davison, P. S.: Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia, J. Geophys. Res., 109, 1–12, https://doi.org/10.1029/2003JD004264, 2004. 5. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B., M. Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|