An inversion method based on multi-angular approaches for estimating bare soil surface parameters from RADARSAT-1

Author:

Sahebi M. R.,Angles J.

Abstract

Abstract. The radar signal recorded by earth observation (EO) satellites is sensitive to soil moisture and surface roughness, which both influence the onset of runoff. This paper focuses on inversion of these parameters using a multi-angular approach based on RADARSAT-1 data with incidence angles of 35° and 47° (in mode S3 and S7). This inversion was performed with three backscatter models: Geometrical Optics Model (GOM), Oh Model (OM), and Modified Dubois Model (MDM), which were compared to obtain the best configuration. Mean absolute errors of 1.23, 1.12, and 2.08 cm for roughness expressed in rms height and for dielectric constant, mean absolute errors of 2.46 – equal to 3.88 (m3 m−3) in volumetric soil moisture, – 4.95 – equal to 8.72 (m3 m−3) in volumetric soil moisture – and 3.31 – equal to 6.03 (m3 m−3) in volumetric soil moisture – were obtained for the MDM, GOM, and OM simulation, respectively. These results indicate that the MDM provided the most accurate data with minimum errors. Therefore, the latter inversion algorithm was applied to images, and the final results are presented in two different maps showing pixel and homogeneous zones for surface roughness and soil moisture.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3