Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models

Author:

Botero B. A.,Francés F.

Abstract

Abstract. This paper proposes the estimation of high return period quantiles using upper bounded distribution functions with Systematic and additional Non-Systematic information. The aim of the developed methodology is to reduce the estimation uncertainty of these quantiles, assuming the upper bound parameter of these distribution functions as a statistical estimator of the Probable Maximum Flood (PMF). Three upper bounded distribution functions, firstly used in Hydrology in the 90's (referred to in this work as TDF, LN4 and EV4), were applied at the Jucar River in Spain. Different methods to estimate the upper limit of these distribution functions have been merged with the Maximum Likelihood (ML) method. Results show that it is possible to obtain a statistical estimate of the PMF value and to establish its associated uncertainty. The behaviour for high return period quantiles is different for the three evaluated distributions and, for the case study, the EV4 gave better descriptive results. With enough information, the associated estimation uncertainty for very high return period quantiles is considered acceptable, even for the PMF estimate. From the robustness analysis, the EV4 distribution function appears to be more robust than the GEV and TCEV unbounded distribution functions in a typical Mediterranean river and Non-Systematic information availability scenario. In this scenario and if there is an upper limit, the GEV quantile estimates are clearly unacceptable.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference50 articles.

1. American Society of Civil Engineers (ASCE): Evaluation procedures for hydrologic safety of dams, Spillway Design Flood Selection, Surface Water Hydrology Committee, Report 8726–26520, ASCE, New York, USA, 1988.

2. Benito, G., Lang, M., Barriendos, M., Llasat, M. C., Frances, F., Ouarda, T., Thorndycraft, V. R., Enzel, Y., Bardossy, A., Coeur, D., and Bobée, B.: Use of Systematic, Palaeoflood and Historical Data for the improvement of flood risk estimation, Review of scientific methods, Nat. Hazards, 31, 623–643, 2004.

3. Botero, B. A.: Estimación de Crecidas de alto período de retorno mediante funciones de distribución con límite superior e información No Sistemática, Ph.D. dissertation, Department of Hydraulic Engineering and Environment, Polytechnic University of Valencia, 223 pp., 2006.

4. Calenda, G., Mancini, C. P., and Volpi, E.: Distribution of the extreme peak floods of the Tiber River from the XV century, Adv. Water Resour., 28(5), 615–625, 2005.

5. Calenda, G., Mancini, C. P., and Volpi, E.: Selection of the probabilistic model of extreme floods: The case of the River Tiber in Rome, J. Hydrol., 371(1–4), 1–11, 2009.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3