Measurement report: Long-term variations in carbon monoxide at a background station in China's Yangtze River Delta region

Author:

Chen Yijing,Ma Qianli,Lin WeiliORCID,Xu XiaobinORCID,Yao Jie,Gao Wei

Abstract

Abstract. This study analyzed the long-term variations in carbon monoxide (CO) mixing ratios from January 2006 to December 2017 at the Lin'an regional atmospheric background station (LAN; 30.3∘ N, 119.73∘ E, 138 m a.s.l.) in China's Yangtze River Delta (YRD) region. The CO mixing ratios were at their highest (0.69 ± 0.08 ppm) and lowest (0.54 ± 0.06 ppm) in winter and summer, respectively. The average daily variation in CO exhibited a double-peaked pattern, with peaks in the morning and evening and a valley in the afternoon. A significant downward trend of −11.3 ppb yr−1 of CO was observed from 2006 to 2017 at the LAN station, which was in accordance with the negative trends of the average CO mixing ratios and total column retrieved from the satellite data (Measurements of Pollution in the Troposphere, MOPITT) over the YRD region during the same period. The average annual CO mixing ratio at the LAN station in 2017 was 0.51 ± 0.04 ppm, which was significantly lower than that (0.71 ± 0.12 ppm) in 2006. The decrease in CO levels was largest in autumn (−15.7 ppb yr−1), followed by summer (−11.1 ppb yr−1), spring (−10.8 ppb yr−1), and winter (−9.7 ppb yr−1). Moreover, the CO levels under relatively polluted conditions (the annual 95th percentiles) declined even more rapidly (−22.4 ppb yr−1, r=-0.68, p<0.05) from 2006 (0.91 ppm) to 2017 (0.58 ppm), and the CO levels under clean conditions (the annual 5th percentiles) showed decreasing evidence but not statistically significant (r=-0.41, p=0.19) throughout the years. The long-term decline and short-term variations in the CO mixing ratios at the LAN station were mainly attributed to the implementation of the anthropogenic pollution control measures in the YRD region and to events like the Shanghai Expo in 2010 and Hangzhou G20 in 2016. The decreased CO level may influence atmospheric chemistry over the region. The average OH reactivity of CO at the LAN station is estimated to significantly drop from 4.1 ± 0.7 s−1 in 2006 to 3.0 ± 0.3 s−1 in 2017.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3