Monitoring CO emissions of the metropolis Mexico City using TROPOMI CO observations
-
Published:2020-12-18
Issue:24
Volume:20
Page:15761-15774
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Borsdorff TobiasORCID, García Reynoso AgustínORCID, Maldonado Gilberto, Mar-Morales Bertha, Stremme WolfgangORCID, Grutter MichelORCID, Landgraf Jochen
Abstract
Abstract. The Tropospheric Monitoring Instrument (TROPOMI) on the ESA Copernicus Sentinel-5
satellite (S5-P) measures carbon monoxide (CO) total column concentrations as
one of its primary targets. In this study, we analyze TROPOMI observations
over Mexico City in the period 14 November 2017 to 25 August 2019 by means of
collocated CO simulations using the regional Weather Research and Forecasting coupled with Chemistry
(WRF-Chem) model. We draw conclusions on the emissions from different urban districts
in the region. Our WRF-Chem simulation distinguishes CO emissions from the
districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala,
Puebla, Mexico City, and Mexico City Arena by 10 separate tracers.
For the data interpretation, we apply a source inversion approach determining
per district the mean emissions and the temporal variability, the latter
regularized to reduce the propagation of the instrument noise and forward-model errors in the inversion. In this way, the TROPOMI observations are used
to evaluate the Inventario Nacional de Emisiones de Contaminantes Criterio
(INEM) inventory that was adapted to the period 2017–2019 using in situ
ground-based observations. For the Tula and Pachuca urban areas in the north
of Mexico City, we obtain 0.10±0.004 and 0.09±0.005 Tg yr−1 CO
emissions, which exceeds significantly the INEM emissions of <0.008 Tg yr−1 for
both areas. On the other hand for Mexico City, TROPOMI estimates
emissions of 0.14±0.006 Tg yr−1 CO, which is about half of the INEM
emissions of 0.25 Tg yr−1, and for the adjacent district Mexico City Arena
the emissions are 0.28±0.01 Tg yr−1 according to TROPOMI observations versus
0.14 Tg yr−1 as stated by the INEM inventory. Interestingly, the total emissions
of both districts are similar (0.42±0.016 Tg yr−1 TROPOMI versus 0.39 Tg yr−1
adapted INEM emissions). Moreover, for both areas we found that the TROPOMI
emission estimates follow a clear weekly cycle with a minimum during the
weekend. This agrees well with ground-based in situ measurements from the
Secretaría del Medio Ambiente (SEDEMA) and Fourier transform spectrometer
column measurements in Mexico City that are operated by the Network for the
Detection of Atmospheric Composition Change Infrared Working Group
(NDACC-IRWG). Overall, our study demonstrates an approach to deploying the large
number of TROPOMI CO data to draw conclusions on urban emissions on sub-city scales
for metropolises like Mexico City. Moreover, for the exploitation of TROPOMI
CO observations our analysis indicates the clear need for further improvements
of regional models like WRF-Chem, in particular with respect to the prediction
of the local wind fields.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference28 articles.
1. Bezanilla, A., Krüger, A., Stremme, W., and de la Mora, M. G.: Solar
absorption infrared spectroscopic measurements over Mexico City: Methane
enhancements, Atmósfera, 27,
173–183,
2014. a 2. Borsdorff, T., Hasekamp, O. P., Wassmann, A., and Landgraf, J.: Insights into Tikhonov regularization: application to trace gas column retrieval and the efficient calculation of total column averaging kernels, Atmos. Meas. Tech., 7, 523–535, https://doi.org/10.5194/amt-7-523-2014, 2014. a, b 3. Borsdorff, T., aan de Brugh, J., Hu, H., Hasekamp, O., Sussmann, R., Rettinger, M., Hase, F., Gross, J., Schneider, M., Garcia, O., Stremme, W., Grutter, M., Feist, D. G., Arnold, S. G., De Mazière, M., Kumar Sha, M., Pollard, D. F., Kiel, M., Roehl, C., Wennberg, P. O., Toon, G. C., and Landgraf, J.: Mapping carbon monoxide pollution from space down to city scales with daily global coverage, Atmos. Meas. Tech., 11, 5507–5518, https://doi.org/10.5194/amt-11-5507-2018, 2018a. a, b, c, d 4. Borsdorff, T., de Brugh, J. A., Hu, H., Aben, I., Hasekamp, O., and Landgraf,
J.: Measuring Carbon Monoxide With TROPOMI: First Results and a Comparison
With ECMWF‐IFS Analysis Data, Geophys. Res. Lett., 45, 2826–2832,
https://doi.org/10.1002/2018GL077045,
2018b. a 5. Borsdorff, T., aan de Brugh, J., Pandey, S., Hasekamp, O., Aben, I., Houweling, S., and Landgraf, J.: Carbon monoxide air pollution on sub-city scales and along arterial roads detected by the Tropospheric Monitoring Instrument, Atmos. Chem. Phys., 19, 3579–3588, https://doi.org/10.5194/acp-19-3579-2019, 2019. a, b, c, d, e, f
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|