Elucidating the pollution characteristics of nitrate, sulfate and ammonium in PM<sub>2.5</sub> in Chengdu, southwest China, based on 3-year measurements

Author:

Kong Liuwei,Feng Miao,Liu Yafei,Zhang Yingying,Zhang Chen,Li Chenlu,Qu Yu,An JunlingORCID,Liu Xingang,Tan Qinwen,Cheng NianliangORCID,Deng Yijun,Zhai Ruixiao,Wang Zheng

Abstract

Abstract. Nitrate, sulfate and ammonium (NSA) are the main secondary inorganic aerosols of PM2.5 and play an important role in air pollution. In this study, a 3-year observational experiment was conducted from 1 January 2015 to 31 December 2017, in Chengdu, southwest China. NSA pollution characteristics, chemical conversion generation, emission reduction control sensitivity and pollutant regional transport characteristics were analyzed. NSA are the most important chemical compositions of particles with aerodynamic equivalent diameter ≤2.5 µm in ambient air (PM2.5), and the contribution of nitrate to the accumulation of PM2.5 concentration is greater than that of sulfate and ammonium. NSA also have obvious characteristics of annual, monthly, seasonal, diurnal and weekly variations. Through observation data and model simulation, it was also found that the existence of an aerosol aqueous environment plays an important role in the formation and existence of NSA. Sensitivity analysis between NSA found that controlling NO3- and SO42- plays an important role in reducing the contribution of NSA to PM2.5, which also implies that the current control of NOx and SO2 is important for improving air pollution. Combined with meteorological conditions and potential source contribution function (PSCF) analysis, local emissions and regional emissions of pollutants are found to have important impacts on Chengdu's atmospheric environment. This research result not only provides an assessment of the current atmospheric emission reduction effect but also provides an important reference for atmospheric pollution control.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3