Retrieving tropospheric NO<sub>2</sub> vertical column densities around the city of Beijing and estimating NO<sub><i>x</i></sub> emissions based on car MAX-DOAS measurements

Author:

Cheng Xinghong,Ma JianzhongORCID,Jin Junli,Guo Junrang,Liu Yuelin,Peng Jida,Ma Xiaodan,Qian Minglong,Xia Qiang,Yan Peng

Abstract

Abstract. We carried out 19 city-circle-around car multi-axis differential optical absorption spectroscopy (MAX-DOAS) experiments on the 6th Ring Road of Beijing in January, September, and October 2014. The tropospheric vertical column densities (VCDs) of NO2 were retrieved from measured spectra by the MAX-DOAS technique and used to estimate the emissions of NOx (≡NO+NO2) from urban Beijing during the experimental periods. The offline LAPS-WRF-CMAQ model system was used to simulate the wind fields by assimilation of observational data and calculate the NO2-to-NOx concentration ratios, both of which are also needed for the estimation of NOx emissions. The NOx emissions in urban Beijing for the different months derived from the car MAX-DOAS measurements in this study were compared to the multi-resolution emission inventory in China for 2012 (MEIC 2012). Our car MAX-DOAS measurements showed higher NO2 VCD in January than in the other two months. The wind field had obvious impacts on the spatial distribution of NO2 VCD, with the mean NO2 VCD along the 6th Ring Road typically being higher under the southerly wind than under the northerly wind. In addition to the seasonal difference, the journey-to-journey variations of estimated NOx emission rates (ENOx) were large even within the same month, mainly due to uncertainties in the calculations of wind speed, the ratio of NO2 and NOx concentration, and the decay rate of NOx from the emission sources to the measured positions under different meteorological conditions. The ranges of ENOx during the heating and non-heating periods were 22.6×1025 to 31.3×1025 and 9.6×1025 to 12.0×1025 molec. s−1, respectively. The average ENOx values in the heating and non-heating periods were 26.9±6.1×1025 molec. s−1 and 11.0±1.2×1025 molec. s−1, respectively. The uncertainty range of ENOx was 20 %–52 %. The monthly emission rates from MEIC 2012 are found to be lower than the estimated ENOx, particularly in January. Our results provide important information and datasets for the validation of satellite products and also show how car MAX-DOAS measurements can be used effectively for dynamic monitoring and updating of the NOx emissions from megacities such as Beijing.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference64 articles.

1. Albers, S. C., McGinley, J. A., Birkenheuer, D., and Smart, J. R.: The local analysis and prediction system (LAPS): Analyses of clouds, precipitation, and temperature, Weather Forecast., 11, 273–287, 1996.

2. Brinksma, E. J., Pinardi, G., Volten, H., Braak, R., Richter, A., Schoenhardt, A., van Roozendael, M., Fayt, C., Hermans, C., Dirksen, R. J., Vlemmix, T., Berkhout, A. J. C., Swart, D. P. J., Oetjen, H., Wittrock, F., Wagner, T., Ibrahim, O. W., de Leeuw, G., Moerman, M., Curier, R. L., Celarier, E. A., Cede, A., Knap, W. H., Veefkind, J. P., Eskes, H. J., Allaart, M., Rothe, R., Piters, A. J. M., and Levelt, P. F.: The 2005 and 2006 DANDELIONS NO2 and aerosol intercomparison campaigns, J. Geophys. Res.-Atmos., 113, D16S46, https://doi.org/10.1029/2007JD008808, 2008.

3. Burrows, J. P., Richter, A., Dehn, A., Deters, B., Himmelmann, S., Voigt, S., and Orphal, J.: Atmospheric remote sensing reference data from GOME-2. temperature-dependent absorption cross-sections of O3 in the 231–794&thinsp;nm range, J. Quant. Spectrosc. Ra., 61, 509–517, 1999.

4. Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., Jiang, J., and Zhu, T. F.: Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event, Environ. Sci. Technol., 48, 1499–1507, https://doi.org/10.1021/es4048472, 2014.

5. Cheng, X., Sun, Z., Li, D., Xu, X., Jia, M., and Cheng, S.: Short-term aerosol radiative effects and their regional difference during heavy haze episodes in January 2013 in China, Atmos. Environ., 165, 248-263, https://doi.org/10.1016/j.atmosenv.2017.06.040, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3