Secondary organic aerosol yields from the oxidation of benzyl alcohol
-
Published:2020-11-10
Issue:21
Volume:20
Page:13167-13190
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Charan Sophia M.ORCID, Buenconsejo Reina S.ORCID, Seinfeld John H.ORCID
Abstract
Abstract. Recent inventory-based analysis suggests that emissions of volatile chemical products in urban areas are competitive with those from the transportation sector. Understanding the potential for secondary organic aerosol formation from these volatile chemical products is therefore critical to predicting levels of aerosol and for formulating policy to reduce aerosol exposure.
Experimental and computationally simulated environmental chamber data provide an understanding of aerosol yield and chemistry under relevant urban conditions (5–200 ppb NO and 291–312 K) and give insight into the effect of volatile chemical products on the production of secondary organic aerosol. Benzyl alcohol, one of these volatile chemical products, is found to have a large secondary organic aerosol formation potential. At NO concentrations of ∼ 80 ppb and 291 K, secondary organic aerosol mass yields for benzyl alcohol can reach 1.
Funder
California Air Resources Board National Science Foundation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference59 articles.
1. Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A.,
Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun,
Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna,
M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy,
J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O∕C and OM∕OC Ratios
of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution
Time-of-Flight Aerosol Mass Spectrometry, Environ. Sci. Technol., 42,
4478–4485, https://doi.org/10.1021/es703009q, 2008. a, b 2. Arey, J., Aschmann, S. M., Kwok, E. S., and Atkinson, R.: Alkyl Nitrate,
Hydroxyalkyl Nitrate, and Hydroxycarbonyl Formation from the NOx-Air
Photooxidations of C5–C8 n-Alkanes, J. Phys. Chem.
A, 105, 1020–1027, https://doi.org/10.1021/jp003292z, 2001. a 3. Baghi, R., Helmig, D., Guenther, A., Duhl, T., and Daly, R.: Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions, Biogeosciences, 9, 3777–3785, https://doi.org/10.5194/bg-9-3777-2012, 2012. a 4. Bernard, F., Magneron, I., Eyglunent, G., Daële, V., Wallington, T. J.,
Hurley, M. D., and Mellouki, A.: Atmospheric chemistry of benzyl alcohol:
Kinetics and mechanism of reaction with OH radicals, Environ. Sci. Technol.,
47, 3182–3189, https://doi.org/10.1021/es304600z, 2013. a, b, c, d 5. Brégonzio-Rozier, L., Siekmann, F., Giorio, C., Pangui, E., Morales, S. B., Temime-Roussel, B., Gratien, A., Michoud, V., Ravier, S., Cazaunau, M., Tapparo, A., Monod, A., and Doussin, J.-F.: Gaseous products and secondary organic aerosol formation during long term oxidation of isoprene and methacrolein, Atmos. Chem. Phys., 15, 2953–2968, https://doi.org/10.5194/acp-15-2953-2015, 2015. a
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|