Impacts of global NO<sub><i>x</i></sub> inversions on NO<sub>2</sub> and ozone simulations
-
Published:2020-11-09
Issue:21
Volume:20
Page:13109-13130
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Qu ZhenORCID, Henze Daven K., Cooper Owen R., Neu Jessica L.
Abstract
Abstract. Tropospheric NO2 and ozone simulations have large uncertainties,
but their biases, seasonality, and trends can be improved with NO2
assimilations. We perform global top-down estimates of monthly NOx
emissions using two Ozone Monitoring Instrument (OMI) NO2 retrievals (NASAv3 and DOMINOv2) from 2005
to 2016 through a hybrid 4D-Var/mass balance inversion. Discrepancy in
NO2 retrieval products is a major source of uncertainties in the
top-down NOx emission estimates. The different vertical sensitivities
in the two NO2 retrievals affect both magnitude and seasonal variations
of top-down NOx emissions. The 12-year averages of regional NOx
budgets from the NASA posterior emissions are 37 % to 53 % smaller than
the DOMINO posterior emissions. Consequently, the DOMINO posterior surface NO2
simulations greatly reduced the negative biases in China (by 15 %) and the
US (by 22 %) compared to surface NO2 measurements. Posterior NOx
emissions show consistent trends over China, the US, India, and Mexico
constrained by the two retrievals. Emission trends are less robust over
South America, Australia, western Europe, and Africa, where the two
retrievals show less consistency. NO2 trends have more consistent
decreases (by 26 %) with the measurements (by 32 %) in the US from 2006
to 2016 when using the NASA posterior emissions. The performance of posterior ozone
simulations has spatial heterogeneities from region to region. On a global
scale, ozone simulations using NASA-based emissions alleviate the double
peak in the prior simulation of global ozone seasonality. The higher
abundances of NO2 from the DOMINO posterior simulations increase the global
background ozone concentrations and therefore reduce the negative biases
more than the NASA posterior simulations using GEOS-Chem v12 at remote
sites. Compared to surface ozone measurements, posterior simulations have
more consistent magnitude and interannual variations than the prior
estimates, but the performance from the NASA-based and DOMINO-based
emissions varies across ozone metrics. The limited availability of remote-sensing data and the use of prior NOx diurnal variations hinder
improvement of ozone diurnal variations from the assimilation, and therefore
have mixed performance on improving different ozone metrics. Additional
improvements in posterior NO2 and ozone simulations require more
precise and consistent NO2 retrieval products, more accurate diurnal
variations of NOx and VOC emissions, and improved simulations of ozone
chemistry and depositions.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference105 articles.
1. Bell, N., Hsu, L., Jacob, D. J., Schultz, M. G., Blake, D. R., Butler, J. H., King, D.
B., Lobert, J. M., and Maier-Reimer, E.: Methyl iodide: Atmospheric
budget and use as a tracer of marine convection in global models, J.
Geophys. Res.-Atmos., 107, ACH 8–1–ACH 8–12,
https://doi.org/10.1029/2001JD001151, 2002. 2. Boersma, K. F., Jacob, D. J., Bucsela, E. J., Perring, A. E., Dirksen, R., van der A, R. J., Yantosca, R. M., Park, R. J., Wenig, M. O., and Bertram, T. H.: Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico, Atmos. Environ., 42, 4480–4497, https://doi.org/10.1016/j.atmosenv.2008.02.004, 2008. 3. Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitão, J., Richter, A., Zhou, Y., and Brunner, D.: An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech., 4, 1905–1928, https://doi.org/10.5194/amt-4-1905-2011, 2011. 4. Boersma, K. F., Eskes, H. J., Richter, A., De Smedt, I., Lorente, A., Beirle, S., van Geffen, J. H. G. M., Zara, M., Peters, E., Van Roozendael, M., Wagner, T., Maasakkers, J. D., van der A, R. J., Nightingale, J., De Rudder, A., Irie, H., Pinardi, G., Lambert, J.-C., and Compernolle, S. C.: Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project, Atmos. Meas. Tech., 11, 6651–6678, https://doi.org/10.5194/amt-11-6651-2018, 2018. 5. Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A Limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 1190–1208, https://doi.org/10.1137/0916069, 1995.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|