Bias in CMIP6 models as compared to observed regional dimming and brightening
-
Published:2020-12-22
Issue:24
Volume:20
Page:16023-16040
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Moseid Kine Onsum, Schulz MichaelORCID, Storelvmo TrudeORCID, Julsrud Ingeborg Rian, Olivié Dirk, Nabat Pierre, Wild MartinORCID, Cole Jason N. S.ORCID, Takemura ToshihikoORCID, Oshima NagaORCID, Bauer Susanne E.ORCID, Gastineau GuillaumeORCID
Abstract
Abstract. Anthropogenic aerosol emissions have increased considerably over the last century, but climate effects and quantification of the emissions are highly uncertain as one goes back in time.
This uncertainty is partly due to a lack of observations in the pre-satellite era, making the observations we do have before 1990 additionally valuable.
Aerosols suspended in the atmosphere scatter and absorb incoming solar radiation and thereby alter the Earth's surface energy balance. Previous studies show that Earth system models (ESMs) do not adequately represent surface energy fluxes over the historical era.
We investigated global and regional aerosol effects over the time period 1961–2014 by looking at surface downwelling shortwave radiation (SDSR).
We used observations from ground stations as well as multiple experiments from eight ESMs participating in the Coupled Model Intercomparison Project Version 6 (CMIP6).
Our results show that this subset of models reproduces the observed transient SDSR well in Europe but poorly in China. We suggest that this may be attributed to missing emissions of sulfur dioxide in China, sulfur dioxide being a precursor to sulfate, which is a highly reflective aerosol and responsible for more reflective clouds.
The emissions of sulfur dioxide used in the models do not show a temporal pattern that could explain observed SDSR evolution over China.
The results from various aerosol emission perturbation experiments from DAMIP, RFMIP and AerChemMIP show that only simulations containing anthropogenic aerosol emissions show dimming, even if the dimming is underestimated.
Simulated clear-sky and all-sky SDSR do not differ greatly, suggesting that cloud cover changes are not a dominant cause of the biased SDSR evolution in the simulations. Therefore we suggest that the discrepancy between modeled and observed SDSR evolution is partly caused by erroneous aerosol and aerosol precursor emission inventories. This is an important finding as it may help interpret whether ESMs reproduce the historical climate evolution for the right or wrong reason.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference56 articles.
1. Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H.,
Hand, J., Klimont, Z., Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L.,
Myhre, G., Olivié, D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M.,
Shindell, D., Skeie, R. B., Stein, A., Takemura, T., Tsyro, S., Vet, R., and
Xu, X.: Global and regional trends of atmospheric sulfur, Sci. Rep.-UK,
9, 953, https://doi.org/10.1038/s41598-018-37304-0, 2019. a 2. Allen, R. J., Norris, J. R., and Wild, M.: Evaluation of multidecadal
variability in CMIP5 surface solar radiation and inferred underestimation
of aerosol direct effects over Europe, China, Japan, and India,
J. Geophys. Res.-Atmos., 118, 6311–6336,
https://doi.org/10.1002/jgrd.50426,
2013. a, b, c 3. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, Cambridge University Press, Cambridge, UK and New York, NY, USA, https://doi.org/10.1017/CBO9781107415324.016,
2013. a, b, c, d 4. Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., Lavergne, C. D., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Ãtha, C.,
Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, E., L.,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur,
G., Lavy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G.,
Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L.,
Meurdesoif, Y., Mignot, J., Musat, I., Ottla, C., Peylin, P., Planton, Y.,
Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A.,
Swingedouw, D., Thiablemont, R., Traore, A. K., Vancoppenolle, M., Vial, J.,
Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of
the IPSL-CM6A-LR Climate Model, J. Adv. Model.
Earth Sy., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010,
2020. a 5. Breiman, L.: Random Forests, Machine Learning, 45, 5–32,
https://doi.org/10.1023/A:1010933404324,
2001. a
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|