Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions
-
Published:2020-10-26
Issue:20
Volume:20
Page:11955-11977
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Wilcox Laura J.ORCID, Liu ZhenORCID, Samset Bjørn H., Hawkins EdORCID, Lund Marianne T.ORCID, Nordling KalleORCID, Undorf Sabine, Bollasina Massimo, Ekman Annica M. L.ORCID, Krishnan Srinath, Merikanto JoonasORCID, Turner Andrew G.ORCID
Abstract
Abstract. There is a large range of future aerosol emissions scenarios explored
in the Shared Socioeconomic Pathways (SSPs), with plausible pathways
spanning a range of possibilities from large global reductions in
emissions by 2050 to moderate global increases over the same
period. Diversity in emissions across the pathways is particularly
large over Asia. Rapid reductions in anthropogenic aerosol and
precursor emissions between the present day and the 2050s lead to
enhanced increases in global and Asian summer monsoon precipitation
relative to scenarios with weak air quality policies. However, the
effects of aerosol reductions do not persist to the end of the 21st
century for precipitation, when instead the response to greenhouse
gases dominates differences across the SSPs. The relative magnitude
and spatial distribution of aerosol changes are particularly important
for South Asian summer monsoon precipitation changes. Precipitation
increases here are initially suppressed in SSPs 2-4.5, 3-7.0, and
5-8.5 relative to SSP1-1.9 when the impact of remote emission
decreases is counteracted by continued increases in South Asian
emissions.
Funder
Natural Environment Research Council Newton Fund Academy of Finland H2020 European Research Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference124 articles.
1. Acosta Navarro, J. C., Varma, V., Riipinen, I., Seland, Ø., Kirkevåg,
A., Struthers, H., Iversen, T., Hansson, H. C., and Ekman, A. M. L.: Amplification of Arctic warming by past air pollution reductions in Europe,
Nat. Geosci., 9, 277–281, https://doi.org/10.1038/ngeo2673, 2016. a 2. Acosta Navarro, J. C., Ekman, A. M. L., Pausata, F. S. R., Lewinschal, A.,
Varma, V., Seland, Ø., Gauss, M., Iversen, T., Kirkevåg, A., Riipinen,
I., and Hansson, H. C.: Future Response of Temperature and Precipitation to
Reduced Aerosol Emissions as Compared with Increased Greenhouse Gas
Concentrations, J. Climate, 30, 939–954,
https://doi.org/10.1175/JCLI-D-16-0466.1,
2017. a, b, c 3. Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J.,
Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J.,
Arkin, P., Nelkin, E., Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R.,
Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D.,
Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global
Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis
(1979–Present), J. Hydrometeorol., 4, 1147–1167,
https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2,
2003. a 4. Andrews, T.: MOHC HadGEM3-GC31-LL model output prepared for CMIP6 RFMIP,
Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.475, 2019. a 5. Andrews, T., Forster, P. M., Boucher, O., Bellouin, N., and Jones, A.: Precipitation, radiative forcing and global temperature change, Geophys.
Res. Lett., 37, L14701, https://doi.org/10.1029/2010GL043991, 2010. a
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|