Measurement report: Important contributions of oxygenated compounds to emissions and chemistry of volatile organic compounds in urban air
-
Published:2020-12-02
Issue:23
Volume:20
Page:14769-14785
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Wu Caihong, Wang Chaomin, Wang SihangORCID, Wang Wenjie, Yuan BinORCID, Qi Jipeng, Wang Baolin, Wang Hongli, Wang Chen, Song Wei, Wang XinmingORCID, Hu WeiweiORCID, Lou ShengrongORCID, Ye Chenshuo, Peng Yuwen, Wang Zelong, Huangfu YiboORCID, Xie Yan, Zhu Manni, Zheng Junyu, Wang Xuemei, Jiang Bin, Zhang Zhanyi, Shao Min
Abstract
Abstract. Volatile organic compounds (VOCs) play important roles in the tropospheric
atmosphere. In this study, VOCs were measured at an urban site in Guangzhou, one of the megacities in the Pearl River Delta (PRD), using a gas chromatograph–mass spectrometer/flame ionization detection (GC–MS/FID) and a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). Diurnal profile analyses show that stronger chemical removal by OH radicals for more reactive hydrocarbons occurs during the daytime, which is used to estimate the daytime average OH radical concentration. In comparison, diurnal profiles of oxygenated volatile organic compounds (OVOCs) indicate evidence of contributions from secondary formation. Detailed source analyses of OVOCs, using a photochemical age-based parameterization method, suggest important contributions from both primary emissions and secondary formation for measured OVOCs. During the campaign, around 1700 ions were detected in PTR-ToF-MS mass spectra, among which there were 462 ions with noticeable concentrations. VOC signals from these ions are quantified based on the sensitivities of available VOC species. OVOC-related ions dominated PTR-ToF-MS mass spectra, with an average contribution of 73 % ± 9 %. Combining measurements from PTR-ToF-MS and GC–MS/FID, OVOCs contribute 57 % ± 10 % to the total concentration of VOCs. Using concurrent measurements of OH reactivity, OVOCs measured by PTR-ToF-MS contribute greatly to the OH reactivity (19 % ± 10 %). In comparison, hydrocarbons account for 21 % ± 11 % of OH reactivity. Adding up the contributions from inorganic gases (48 % ± 15 %), ∼ 11 % (range of 0 %–19 %) of the OH reactivity remains `missing”, which is well within the combined uncertainties between the measured and calculated OH reactivity. Our results demonstrate the important roles of OVOCs in the emission and evolution budget of VOCs in the urban atmosphere.
Funder
National Natural Science Foundation of China Guangdong Innovative and Entrepreneurial Research Team Program Natural Science Foundation of Guangdong Province
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference73 articles.
1. Apel, E. C., Riemer, D. D., Hills, A., Baugh, W., Orlando, J., Faloona, I.,
Tan, D., Brune, W., Lamb, B., Westberg, H., Carroll, M. A., Thornberry, T.,
and Geron, C. D.: Measurement and interpretation of isoprene fluxes and
isoprene, methacrolein, and methyl vinyl ketone mixing ratios at the PROPHET
site during the 1998 Intensive, J. Geophys. Res.-Atmos., 107, ACH 7-1–ACH 7-15, https://doi.org/10.1029/2000jd000225, 2002. 2. Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic
Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003. 3. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. 4. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. 5. Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P., Soukoulis,
C., Aprea, E., Märk, T., Gasperi, F., and Biasioli, F.: On Quantitative
Determination of Volatile Organic Compound Concentrations Using Proton
Transfer Reaction Time-of-Flight Mass Spectrometry, Environ. Sci. Tech., 46, 2283–2290, https://doi.org/10.1021/es203985t, 2012.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|