Characterizing sources of high surface ozone events in the southwestern US with intensive field measurements and two global models
-
Published:2020-09-08
Issue:17
Volume:20
Page:10379-10400
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhang LiORCID, Lin MeiyunORCID, Langford Andrew O., Horowitz Larry W., Senff Christoph J., Klovenski ElizabethORCID, Wang YuxuanORCID, Alvarez II Raul J., Petropavlovskikh IrinaORCID, Cullis Patrick, Sterling Chance W., Peischl JeffORCID, Ryerson Thomas B.ORCID, Brown Steven S., Decker Zachary C. J., Kirgis Guillaume, Conley StephenORCID
Abstract
Abstract. The detection and attribution of high background ozone (O3) events in
the southwestern US is challenging but relevant to the effective
implementation of the lowered National Ambient Air Quality Standard (NAAQS;
70 ppbv). Here we leverage intensive field measurements from the Fires,
Asian, and Stratospheric Transport−Las Vegas Ozone Study (FAST-LVOS) in
May–June 2017, alongside high-resolution simulations with two global
models (GFDL-AM4 and GEOS-Chem), to study the sources of O3 during
high-O3 events. We show possible stratospheric influence on 4 out of
the 10 events with daily maximum 8 h average (MDA8) surface O3
above 65 ppbv in the greater Las Vegas region. While O3 produced from
regional anthropogenic emissions dominates pollution events in the Las Vegas
Valley, stratospheric intrusions can mix with regional pollution to push
surface O3 above 70 ppbv. GFDL-AM4 captures the key characteristics of
deep stratospheric intrusions consistent with ozonesondes, lidar profiles,
and co-located measurements of O3, CO, and water vapor at Angel Peak,
whereas GEOS-Chem has difficulty simulating the observed features and
underestimates observed O3 by ∼20 ppbv at the surface.
On days when observed MDA8 O3 exceeds 65 ppbv and the AM4 stratospheric
ozone tracer shows 20–40 ppbv enhancements, GEOS-Chem simulates
∼15 ppbv lower US background O3 than GFDL-AM4. The two
models also differ substantially during a wildfire event, with GEOS-Chem
estimating ∼15 ppbv greater O3, in better agreement with
lidar observations. At the surface, the two models bracket the observed MDA8
O3 values during the wildfire event. Both models capture the
large-scale transport of Asian pollution, but neither resolves some
fine-scale pollution plumes, as evidenced by aerosol backscatter, aircraft,
and satellite measurements. US background O3 estimates from the two
models differ by 5 ppbv on average (greater in GFDL-AM4) and up to 15 ppbv
episodically. Uncertainties remain in the quantitative attribution of each
event. Nevertheless, our multi-model approach tied closely to observational
analysis yields some process insights, suggesting that elevated background
O3 may pose challenges to achieving a potentially lower NAAQS level
(e.g., 65 ppbv) in the southwestern US.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference76 articles.
1. Akritidis, D., Katragkou, E., Zanis, P., Pytharoulis, I., Melas, D., Flemming, J., Inness, A., Clark, H., Plu, M., and Eskes, H.: A deep stratosphere-to-troposphere ozone transport event over Europe simulated in CAMS global and regional forecast systems: analysis and evaluation, Atmos. Chem. Phys., 18, 15515–15534, https://doi.org/10.5194/acp-18-15515-2018, 2018. 2. Alvarado, M. J., Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., Cohen, R. C., Min, K.-E., Perring, A. E., Browne, E. C., Wooldridge, P. J., Diskin, G. S., Sachse, G. W., Fuelberg, H., Sessions, W. R., Harrigan, D. L., Huey, G., Liao, J., Case-Hanks, A., Jimenez, J. L., Cubison, M. J., Vay, S. A., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Flocke, F. M., Pollack, I. B., Wennberg, P. O., Kurten, A., Crounse, J., Clair, J. M. St., Wisthaler, A., Mikoviny, T., Yantosca, R. M., Carouge, C. C., and Le Sager, P.: Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739–9760, https://doi.org/10.5194/acp-10-9739-2010, 2010. 3. Alvarez II, R. J., Senff, C. J., Langford, A. O., Weickmann, A. M., Law, D.
C., Machol, J. L., Merritt, D. A., Marchbanks, R. D., Sandberg, S. P.,
Brewer, W. A., Hardesty, R. M., and Banta, R. M.: Development and
Application of a Compact, Tunable, Solid-State Airborne Ozone Lidar System
for Boundary Layer Profiling, J. Atmos. Ocean. Technol., 28, 1258–1272,
https://doi.org/10.1175/jtech-d-10-05044.1, 2011. 4. Barletta, B., Meinardi, S., Simpson, I. J., Atlas, E. L., Beyersdorf, A. J., Baker, A. K., Blake, N. J., Yang, M., Midyett, J. R., Novak, B. J., McKeachie, R. J., Fuelberg, H. E., Sachse, G. W., Avery, M. A., Campos, T., Weinheimer, A. J., Rowland, F. S., and Blake, D. R.: Characterization of volatile organic compounds (VOCs) in Asian and north American pollution plumes during INTEX-B: identification of specific Chinese air mass tracers, Atmos. Chem. Phys., 9, 5371–5388, https://doi.org/10.5194/acp-9-5371-2009, 2009. 5. Baylon, P. M., Jaffe, D. A., Pierce, R. B., and Gustin, M. S.: Interannual
Variability in Baseline Ozone and Its Relationship to Surface Ozone in the
Western U.S, Environ. Sci. Technol., 50, 2994–3001,
https://doi.org/10.1021/acs.est.6b00219, 2016.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|