Contrasting conifer species productivity in relation to soil carbon, nitrogen and phosphorus stoichiometry of British Columbia perhumid rainforests

Author:

Kranabetter John Marty,Sholinder Ariana,de Montigny Louise

Abstract

Abstract. Temperate rainforest soils of the Pacific Northwest are often carbon (C) rich and encompass a wide range of fertility, reflecting varying nitrogen (N) and phosphorus (P) availability. Soil resource stoichiometry (C : N : P) may provide an effective measure of site nutrient status and help refine species-dependent patterns in forest productivity across edaphic gradients. We determined mineral soil and forest floor nutrient concentrations across very wet (perhumid) rainforest sites of southwestern Vancouver Island (Canada) and employed soil element ratios as covariates in a long-term planting density trial to test their utility in defining basal area growth response of four conifer species. There were strong positive correlations in mineral soil C, N, and organic P (Po) concentrations and close alignment in C : N and C : Po both among and between substrates. Stand basal area after 5 decades was best reflected by mineral soil and forest floor C : N, but in either case included a significant species–soil interaction. The conifers with ectomycorrhizal fungi had diverging growth responses displaying either competitive (Picea sitchensis) or stress-tolerant (Tsuga heterophylla, Pseudotsuga menziesii) attributes, in contrast to a more generalist response by an arbuscular mycorrhizal tree (Thuja plicata). Despite the consistent patterns in organic matter quality, we found no evidence for increased foliar P concentrations with declining element ratios (C : Po or C : Ptotal) as we did for N. The often high C : Po ratios (as much as 3000) of these soils may reflect a stronger immobilization sink for P than N, which, along with ongoing sorption of PO4-, could limit the utility of C : Po or N : Po to adequately reflect P supply. The dynamics and availability of soil P to trees, particularly as Po, deserves greater attention, as many perhumid rainforests were co-limited by N and P, or, in some stands, possibly P alone.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3