The probabilistic hydrological MARCS<sup>HYDRO</sup> (the MARkov Chain System) model: its structure and core version 0.2

Author:

Shevnina ElenaORCID,Silaev Andrey

Abstract

Abstract. The question of the environmental risks of social and economic infrastructure has recently become apparent due to an increase in the number of extreme weather events. Extreme runoff events include floods and droughts. In water engineering, extreme runoff is described in terms of probability and uses methods of frequency analysis to evaluate an exceedance probability curve (EPC) for runoff. It is assumed that historical observations of runoff are representative of the future; however, trends in the observed time series show doubt in this assumption. The paper describes a probabilistic hydrological MARCSHYDRO (the MARkov Chain System) model that can be applied to predict future runoff extremes. The MARCSHYDRO model simulates statistical estimators of multi-year runoff in order to perform future projections in a probabilistic form. Projected statistics of the meteorological variables available in climate scenarios force the model. This study introduces the new model's core version and provides a user guide together with an example of the model set-up in a single case study. In this case study, the model simulates the projected EPCs of annual runoff under three climate scenarios. The scope of applicability and limitations of the model's core version 0.2 are discussed.

Funder

Academy of Finland

Publisher

Copernicus GmbH

Reference60 articles.

1. Andreev, A., Kanto, A., and Malo, P.: Simple approach for distribution selection in the Pearson system, Working papers of Helsingin kauppakorkeakoulu, Helsinki, Finland, 25 pp., 2005.

2. Arheimer, B. and Lindström, G.: Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100), Hydrol. Earth Syst. Sci., 19, 771–784, https://doi.org/10.5194/hess-19-771-2015, 2015.

3. Benson, M. A.: Uniform flood frequency estimating methods for federal agencies, Water Resour. Res., 4, 891–908, https://doi.org/10.1029/WR004i005p00891, 1968.

4. Budyko, M. I. and Izrael, Y. A. (Eds): Anthropogenic Climatic Change, University of Arizona Press, Tucson, USA, 1991.

5. Bulletin 17–B: Guideline for Determining Flood Flow Frequency, U.S. Geological Survey, Virginia, USA, 1982.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3