Observational constraints on entrainment and the entrainment interface layer in stratocumulus

Author:

Carman J. K.,Rossiter D. L.,Khelif D.,Jonsson H. H.,Faloona I. C.,Chuang P. Y.

Abstract

Abstract. Aircraft sampling of the stratocumulus-topped boundary layer (STBL) during the Physics of Stratocumulus Top (POST) experiment was primarily achieved using sawtooth flight patterns, during which the atmospheric layer 100 m above and below cloud top was sampled at a frequency of once every 2 min. The large data set that resulted from each of the 16 flights document the complex structure and variability of this interfacial region in a variety of conditions. In this study, we first describe some properties of the entrainment interface layer (EIL), where strong gradients in turbulent kinetic energy (TKE), potential temperature and moisture can be found. We find that defining the EIL by the first two properties tends to yield similar results, but that moisture can be a misleading tracer of the EIL. These results are consistent with studies using large-eddy simulations. We next utilize the POST data to shed light on and constrain processes relevant to entrainment, a key process in the evolution of the STBL that to-date is not well-represented even by high resolution models. We define "entrainment efficiency" as the ratio of the TKE consumed by entrainment to that generated within the STBL (primarily by cloud-top cooling). We find values for the entrainment efficiency that vary by 1.5 orders of magnitude, which is even greater than the one order magnitude that previous modeling results have suggested. Our analysis also demonstrates that the entrainment efficiency depends on the strength of the stratification of the EIL, but not on the TKE in the cloud top region. The relationships between entrainment efficiency and other STBL parameters serve as novel observational contraints for simulations of entrainment in such systems.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3