Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex

Author:

Wegner T.,Grooß J.-U.,von Hobe M.,Stroh F.,Sumińska-Ebersoldt O.,Volk C. M.,Hösen E.,Mitev V.,Shur G.,Müller R.

Abstract

Abstract. Chlorine activation in the Arctic is investigated by examining different parameterizations for uptake coefficients on stratospheric aerosols, high-resolution in-situ measurements and vortex-wide satellite observations. The parameterizations for heterogeneous chemistry on liquid aerosols are most sensitive to temperature with the reaction rates doubling for every 1 K increase in temperature. However, differences between the currently available parameterizations are negligible. For Nitric Acid Trihydrate particles (NAT) the major factors of uncertainty are the number density of nucleated particles and different parameterizations for heterogeneous chemistry. These two factors induce an uncertainty that covers several orders of magnitude on the reaction rate. Nonetheless, since predicted reaction rates on liquid aerosols always exceed those on NAT, the overall uncertainty for chlorine activation is small. In-situ observations of ClOx from Arctic winters in 2005 and 2010 are used to evaluate the heterogeneous chemistry parameterizations. The conditions for these measurements proved to be very different between those two winters with HCl being the limiting reacting partner for the 2005 measurements and ClONO2 for the 2010 measurements. Modeled levels of chlorine activation are in very good agreement with the in-situ observations and the surface area provided by Polar Stratospheric Clouds (PSCs) has only a limited impact on modeled chlorine activation. This indicates that the parameterizations give a good representation of the processes in the atmosphere. Back-trajectories started on the location of the observations in 2005 indicate temperatures on the threshold for PSC formation, hence the surface area is mainly provided by the background aerosol. Still, the model shows additional chlorine activation during this time-frame, providing cautionary evidence for chlorine activation even in the absence of PSCs. Vortex-averaged satellite observations by the MLS instrument also show no definite connection between chlorine activation and PSC formation. The inter -and intra-annual variability of vortex-average HCl and HNO3 based on MLS observations is examined for the Arctic winters 2004/2005 to 2010/2011. These observations show that removal of HCl and HNO3 from the gas-phase are not correlated. HNO3 loss exhibits great inter-annual variability depending on prevailing temperatures while HCl loss is continuous through December without considerable inter- or intra-annual variability. Only the recovery of HCl in late winter depends on the level of denitrification. Hence, the occurrence of HNO3 containing PSC particles does not seem to have a significant effect on the speed of initial chlorine activation on a vortex-wide scale.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference70 articles.

1. Abbatt, J. P. D. and Molina, M. J.: Heterogeneous interactions of ClONO2 and HCl on nitric acid trihydrate at 202 K, J. Phys. Chem., 96, 7674–7679, https://doi.org/10.1021/j100198a036, 1992.

2. Bernath, P. F., McElroy, C., Abrams, M., Boone, C., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P., Colin, R., DeCola, P., DeMazière, M., Drummond, J., Dufour, D., Evans, W., Fast, H., Fussen, D., Gilbert, K., Jennings, D., Llewellyn, E., Lowe, R., Mahieu, E., McConnell, J., McHugh, M., McLeod, S., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C., Rochon, Y., Rowlands, N., Semeniuk, K., Simon, P., Skelto, R., Sloan, J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K., Walkty, I., Wardle, D., Wehrle, V., Zander, R., and Zou, J.: Atmospheric Chemistry Experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005.

3. Brakebusch, M., Randall, C. E., Kinnison, D. E., Tilmes, S., Santee, M. L., and Manney, G. L.: Evaluation of Whole Atmosphere Community Climate Model simulations of ozone during Arctic winter 2004-2005, in review, J. Geophys. Res., 2012.

4. Carslaw, K. S. and Peter, T.: Uncertainties in reactive uptake coefficients for solid stratospheric particles – 1. Surface chemistry, Geophys. Res. Lett., 24, 1743–1746, 1997.

5. Carslaw, K. S., Luo, B. P., Clegg, S. L., Peter, T., Brimblecombe, P., and Crutzen, P. J.: Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles, Geophys. Res. Lett., 21, 2479–2482, 1994.

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3