Source-receptor relationships for speciated atmospheric mercury at the remote Experimental Lakes Area, northwestern Ontario, Canada
-
Published:2012-02-17
Issue:4
Volume:12
Page:1903-1922
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Cheng I.,Zhang L.,Blanchard P.,Graydon J. A.,Louis V. L. St.
Abstract
Abstract. Source-receptor relationships for speciated atmospheric mercury measured at the Experimental Lakes Area (ELA), northwestern Ontario, Canada were investigated using various receptor-based approaches. The data used in this study include gaseous elemental mercury (GEM), mercury bound to fine airborne particles (<2.5 μm) (PHg), reactive gaseous mercury (RGM), major inorganic ions, sulphur dioxide, nitric acid gas, ozone, and meteorological variables, all of which were measured between May 2005 and December 2006. The source origins identified were related to transport of industrial and combustion emissions (associated with elevated GEM), photochemical production of RGM (associated with elevated RGM), road-salt particles with absorption of gaseous Hg (associated with elevated PHg and RGM), crustal/soil emissions, and background pollution. Back trajectory modelling illustrated that a remote site, like ELA, is affected by distant Hg point sources in Canada and the United States. The sources identified from correlation analysis, principal components analysis and K-means cluster analysis were generally consistent. The discrepancies between the K-means and Hierarchical cluster analysis were the clusters related to transport of industrial/combustion emissions, photochemical production of RGM, and crustal/soil emissions. Although it was possible to assign the clusters to these source origins, the trajectory plots for the Hierarchical clusters were similar to some of the trajectories belonging to several K-means clusters. This likely occurred because the variables indicative of transport of industrial/combustion emissions were elevated in at least two or more of the clusters, which means this Hg source was well-represented in the data.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference102 articles.
1. Abbott, M. L., Lin, C.-J., Martian, P., and Einerson, J. J.:. Atmospheric mercury near Salmon Falls Creek Reservoir in southern Idaho, Appl. Geochem., 23, 438–453, 2008. 2. Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E., Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., Louis, V. L. St., Talbot, R. W., Edgerton, E. S., Zhang, Y., and Sunderland, E. M.: Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12, 591–603, https://doi.org/10.5194/acp-12-591-2012, 2012. 3. Arkian, F., Meshkatee, A.-H., and Bidokhti, A. A.: The effects of large-scale atmospheric flows on berylium-7 activity concentration in surface air, Environ. Monit. Assess., 168, 429–439, https://doi.org/10.1007/s10661-009-1124-1, 2010. 4. Baya, A. P. and Van Heyst, B.: Assessing the trends and effects of environmental parameters on the behaviour of mercury in the lower atmosphere over cropped land over four seasons, Atmos. Chem. Phys., 10, 8617–8628, https://doi.org/10.5194/acp-10-8617-2010, 2010. 5. Brooks, S., Luke, W., Cohen, M., Kelly, P., Lefer, B., and Rappenglu, B.,: Mercury species measured atop the Moody Tower TRAMP site, Houston, Texas, Atmos. Environ., 44, 4045–4055, 2010.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|