Atmospheric removal times of the aerosol-bound radionuclides <sup>137</sup>Cs and <sup>131</sup>I measured after the Fukushima Dai-ichi nuclear accident – a constraint for air quality and climate models
-
Published:2012-11-16
Issue:22
Volume:12
Page:10759-10769
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Kristiansen N. I.,Stohl A.,Wotawa G.
Abstract
Abstract. Caesium-137 (137Cs) and iodine-131 (131I) are radionuclides of particular concern during nuclear accidents, because they are emitted in large amounts and are of significant health impact. 137Cs and 131I attach to the ambient accumulation-mode (AM) aerosols and share their fate as the aerosols are removed from the atmosphere by scavenging within clouds, precipitation and dry deposition. Here, we estimate their removal times from the atmosphere using a unique high-precision global measurement data set collected over several months after the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. The noble gas xenon-133 (133Xe), also released during the accident, served as a passive tracer of air mass transport for determining the removal times of 137Cs and 131I via the decrease in the measured ratios 137Cs/133Xe and 131I/133Xe over time. After correction for radioactive decay, the 137Cs/133Xe ratios reflect the removal of aerosols by wet and dry deposition, whereas the 131I/133Xe ratios are also influenced by aerosol production from gaseous 131I. We find removal times for 137Cs of 10.0–13.9 days and for 131I of 17.1–24.2 days during April and May 2011. The removal time of 131I is longer due to the aerosol production from gaseous 131I, thus the removal time for 137Cs serves as a better estimate for aerosol lifetime. The removal time of 131I is of interest for semi-volatile species. We discuss possible caveats (e.g. late emissions, resuspension) that can affect the results, and compare the 137Cs removal times with observation-based and modeled aerosol lifetimes. Our 137Cs removal time of 10.0–13.9 days should be representative of a "background" AM aerosol well mixed in the extratropical Northern Hemisphere troposphere. It is expected that the lifetime of this vertically mixed background aerosol is longer than the lifetime of fresh AM aerosols directly emitted from surface sources. However, the substantial difference to the mean lifetimes of AM aerosols obtained from aerosol models, typically in the range of 3–7 days, warrants further research on the cause of this discrepancy. Too short modeled AM aerosol lifetimes would have serious implications for air quality and climate model predictions.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. Balter, M.: Thyroid cancer: children become the first victims of fallout, Science, 272, 357–360, 1996. 2. Berglen, T., Berntsen, T. K., Isaksen, I. S. A., and Sundet, J. K.: A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle, J. Geophys. Res., 109, D19310, https://doi.org/10.1029/2003JD003948, 2004. 3. Bleuer, J. P., Averkin, Y. I., and Abelin, T.: Chernobyl-related thyroid cancer: what evidence for role of short-lived iodines?, Environ. Health Persp., 105, 1483–1486, 1997. 4. Bourgeois, Q. and Bey, I.: Pollution transport efficiency toward the Arctic: Sensitivity to aerosol scavenging and source regions, J. Geophys. Res., 116, D08213, https://doi.org/10.1029/2010JD015096, 2011. 5. Cambray, R. S., Cawse, P. A., Garland, J. A., Gibson, J. A. B., Johnson, P., Lewis, G. N. J., Newton, D., Salmon, L., and Wade, B. O.: Observations on radioactivity from the Chernobyl accident, Nuclear Energy 26, 77–101, 1987.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|