In-situ measurements of atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) at the Shangdianzi regional background station, China
-
Published:2012-11-05
Issue:21
Volume:12
Page:10181-10193
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Yao B.,Vollmer M. K.,Zhou L. X.,Henne S.,Reimann S.,Li P. C.,Wenger A.,Hill M.
Abstract
Abstract. Atmospheric hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) were measured in-situ at the Shangdianzi (SDZ) Global Atmosphere Watch (GAW) regional background station, China, from May 2010 to May 2011. The time series for five HFCs and three PFCs showed occasionally high-concentration events while background conditions occurred for 36% (HFC-32) to 83% (PFC-218) of all measurements. The mean mixing ratios during background conditions were 24.5 ppt (parts per trillion, 10−12, molar) for HFC-23, 5.86 ppt for HFC-32, 9.97 ppt for HFC-125, 66.0 ppt for HFC-134a, 9.77 ppt for HFC-152a, 79.1 ppt for CF4, 4.22 ppt for PFC-116, and 0.56 ppt for PFC-218. The background mixing ratios for the compounds at SDZ are consistent with those obtained at mid to high latitude sites in the Northern Hemisphere. North-easterly winds were associated with negative contributions to atmospheric HFC and PFC loadings (mixing ratio anomalies weighted by time associated with winds in a given sector), whereas south-westerly advection (urban sector) showed positive loadings. Chinese emissions estimated by a tracer ratio method using carbon monoxide as tracer were 3.6 ± 3.2 kt yr−1 for HFC-23, 4.3 ± 3.6 kt yr−1 for HFC-32, 2.7 ± 2.3 kt yr−1 for HFC-125, 6.0 ± 5.6 kt yr−1 for HFC-134a, 2.0 ± 1.8 kt yr−1 for HFC-152a, 2.4 ± 2.1 kt yr−1 for CF4, 0.27 ± 0.26 kt yr−1 for PFC-116, and 0.061 ± 0.095 kt yr−1 for PFC-218. The lower HFC-23 emissions compared to earlier studies may be a result of the HFC-23 abatement measures taken as part of Clean Development Mechanism (CDM) projects that started in 2005.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference38 articles.
1. Barletta, B., Meinardi, S., Simpson, I. J., Rowland, F. S., Chan, C.-Y., Wang, X., Zou, S., Chan, L. Y., and Blake, D. R.: Ambient halocarbon mixing ratios in 45 Chinese cities, Atmos. Environ., 40, 7706–7719, https://doi.org/10.1016/j.atmosenv.2006.08.039, 2006. 2. Barletta, B., Nissenson, P., Meinardi, S., Dabdub, D., Sherwood Rowland, F., VanCuren, R. A., Pederson, J., Diskin, G. S., and Blake, D. R.: HFC-152a and HFC-134a emission estimates and characterization of CFCs, CFC replacements, and other halogenated solvents measured during the 2008 ARCTAS campaign (CARB phase) over the South Coast Air Basin of California, Atmos. Chem. Phys., 11, 2655–2669, https://doi.org/10.5194/acp-11-2655-2011, 2011. 3. Chan, L. Y. and Chu, K. W.: Halocarbons in the atmosphere of the industrial-related Pearl River Delta region of China, J. Geophys. Res., 112, D04305, https://doi.org/10.1029/2006JD007097, 2007. 4. Chan, C. Y., Tang, J. H., Li, Y. S., and Chan, L. Y.: Mixing ratios and sources of halocarbons in urban, semi-urban and rural sites of the Pearl River Delta, South China, Atmos. Environ., 40, 7331–7345, https://doi.org/10.1016/j.atmosenv.2006.06.041, 2006. 5. Dlugokencky, E. J., Harris, J. M., Chung, Y. S., Tans, P. P., and Fung, I.: The relationship between the methane seasonal cycle and regional sources and sinks at Tae-ahn Peninsula, Korea, Atmos. Environ, Part A: Gen. Top., 27, 2115–2120, https://doi.org/10.1016/0960-1686(93)90041-V, 1993.
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|