Time-stamp correction of magnetic observatory data acquired during unavailability of time-synchronization services
-
Published:2017-09-01
Issue:2
Volume:6
Page:311-317
-
ISSN:2193-0864
-
Container-title:Geoscientific Instrumentation, Methods and Data Systems
-
language:en
-
Short-container-title:Geosci. Instrum. Method. Data Syst.
Author:
Coïsson PierdavideORCID, Telali Kader, Heumez Benoit, Lesur VincentORCID, Lalanne Xavier, Xin Chang Jiang
Abstract
Abstract. During magnetic observatory data acquisition, the data time stamp is kept synchronized with a precise source of time. This is usually done using a GPS-controlled pulse per second (PPS) signal. For some observatories located in remote areas or where internet restrictions are enforced, only the magnetometer data are transmitted, limiting the capabilities of monitoring the acquisition operations. The magnetic observatory in Lanzhou (LZH), China, experienced an unnoticed interruption of the GPS PPS starting 7 March 2013. The data logger clock drifted slowly in time: in 6 months a lag of 27 s was accumulated. After a reboot on 2 April 2014 the drift became faster, −2 s per day, before the GPS PPS could be restored on 8 July 2014. To estimate the time lags that LZH time series had accumulated, we compared it with data from other observatories located in East Asia. A synchronization algorithm was developed. Natural sources providing synchronous events could be used as markers to obtain the time lag between the observatories. The analysis of slices of 1 h of 1 s data at arbitrary UTC allowed estimating time lags with an uncertainty of ∼ 11 s, revealing the correct trends of LZH time drift. A precise estimation of the time lag was obtained by comparing data from co-located instruments controlled by an independent PPS. In this case, it was possible to take advantage of spikes and local noise that constituted precise time markers. It was therefore possible to determine a correction to apply to LZH time stamps to correct the data files and produce reliable 1 min averaged definitive magnetic data.
Publisher
Copernicus GmbH
Subject
Atmospheric Science,Geology,Oceanography
Reference7 articles.
1. Changjiang, X. and Zhang, S.: The Analysis of Baselines for Different Fluxgate Theodolites of Geomagnetic Observatories, Data Science Journal, 10, IAGA159–IAGA168, https://doi.org/10.2481/dsj.IAGA-23, 2011. 2. Chulliat, A., Savary, J., Telali, K., and Lalanne, X.: Acquisition of 1-second data in IPGP magnetic observatories, in: Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing, edited by: Love, J. J., Open-File Report 2009–1226, 54–59, U.S. Geological Survey, 54–59, available at: https://pubs.er.usgs.gov/publication/ofr20091226 (last access: 9 August 2017), 2009. 3. INTERMAGNET Operations Committee and Executive Council: INTERMAGNET Technical Reference Manual, 4.6th Edn., available at: http://www.intermagnet.org/publication-software/technicalsoft-eng.php (last access: 9 August 2017), 2012. 4. Love, J. J. and Chulliat, A.: An International Network of Magnetic Observatories, Eos, Transactions American Geophysical Union, 94, 373–374, https://doi.org/10.1002/2013EO420001, 2013. 5. Peltier, A. and Chulliat, A.: On the feasibility of promptly producing quasi-definitive magnetic observatory data, Earth Planets Space, 62, e5–e8, https://doi.org/10.5047/eps.2010.02.002, 2010.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|