Modelling surface temperature and radiation budget of snow-covered complex terrain
-
Published:2022-02-15
Issue:2
Volume:16
Page:559-579
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Robledano AlvaroORCID, Picard GhislainORCID, Arnaud LaurentORCID, Larue FannyORCID, Ollivier Inès
Abstract
Abstract. The surface temperature controls the temporal evolution of the snowpack, playing a key role in metamorphism and snowmelt. It shows large spatial variations in mountainous areas because the surface energy budget is affected by the topography, for instance because of the modulation of the short-wave irradiance by the local slope and the shadows and the short-wave and long-wave re-illumination of the surface from surrounding slopes. These topographic effects are often neglected in large-scale models considering the surface to be flat and smooth. Here we aim at estimating the surface temperature of snow-covered mountainous terrain in clear-sky conditions in order to evaluate the relative importance of the different processes that control the spatial variations. For this, a modelling chain is implemented to compute the surface temperature in a kilometre-wide area from local radiometric and meteorological measurements at a single station. The first component of this chain is the Rough Surface Ray-Tracing (RSRT) model. Based on a photon transport Monte Carlo algorithm, this model quantifies the incident and reflected short-wave radiation on every facet of the mesh describing the snow-covered terrain. The second component is a surface scheme that estimates the terms of the surface energy budget from which the surface temperature is eventually estimated. To assess the modelling chain performance, we use in situ measurements of surface temperature and satellite thermal observations (Landsat 8) in the Col du Lautaret area, in the French Alps. The results of the simulations show (i) an agreement between the simulated and measured surface temperature at the station for a diurnal cycle in winter within 0.2 ∘C; (ii) that the spatial variations in surface temperature are on the order of 5 to 10 ∘C in the domain and are well represented by the model; and (iii) that the topographic effects ranked by importance are the modulation of solar irradiance by the local slope, followed by the altitudinal variations in air temperature (lapse rate), the re-illumination by long-wave thermal emission from surrounding terrain, and the spectral dependence of snow albedo. The changes in the downward long-wave flux because of variations in altitude and the absorption enhancement due to multiple bounces of photons in steep terrain play a less significant role. These results show the necessity of considering the topography to correctly assess the energy budget and the surface temperature of snow-covered complex terrain.
Funder
Centre National d’Etudes Spatiales Agence Nationale de la Recherche
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference65 articles.
1. Adams, E., McKittrick, L., Slaughter, A., Staron, P., Shertzer, R., Miller, D.,
Leonard, T., Mccabe, D., Henninger, I., Catharine, D., Cooperstein, M., and
Laveck, K.: Modeling variation of surface hoar and radiation
recrystallization across a slope, ISSW 09 – International Snow Science
Workshop, Proceedings, 27 September–2 October 2009, Davos, Switzerland, 97–101, 2009. a 2. Adams, E., Slaughter, A., McKittrick, L., and Miller, D.: Local
terrain-topography and thermal-properties influence on energy and mass
balance of a snow cover, Ann. Glaciol., 52, 169–175,
https://doi.org/10.3189/172756411797252257, 2011. a 3. Arnaud, L., Picard, G., Champollion, N., Domine, F., Gallet, J., Lefebvre, E.,
Fily, M., and Barnola, J.: Measurement of vertical profiles of snow specific
surface area with a 1 cm resolution using infrared reflectance: instrument
description and validation, J. Glaciol., 57, 17–29,
https://doi.org/10.3189/002214311795306664, 2011. a 4. Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic controls
on the surface energy balance of a high Arctic valley glacier, J.
Geophys. Res., 111, F02011, https://doi.org/10.1029/2005jf000426, 2006. a, b, c 5. Arya, S. P.: Chapter 2 Energy Budget near the Surface, in: Introduction to
Micrometeorology, edited by: Arya, S. P., vol. 42 of International
Geophysics, Academic Press, 9–20,
https://doi.org/10.1016/S0074-6142(08)60417-9, 1988. a
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|