Spatially resolved evaluation of Earth system models with satellite column-averaged CO<sub>2</sub>
-
Published:2020-12-08
Issue:23
Volume:17
Page:6115-6144
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Gier Bettina K.ORCID, Buchwitz MichaelORCID, Reuter MaximilianORCID, Cox Peter M.ORCID, Friedlingstein PierreORCID, Eyring VeronikaORCID
Abstract
Abstract. Earth system models (ESMs) participating in the Coupled
Model Intercomparison Project Phase 5 (CMIP5) showed large uncertainties in
simulating atmospheric CO2 concentrations. We utilize the Earth System
Model Evaluation Tool (ESMValTool) to evaluate emission-driven CMIP5 and
CMIP6 simulations with satellite data of column-average CO2 mole
fractions (XCO2). XCO2 time series show a large spread among the
model ensembles both in CMIP5 and CMIP6. Compared to the satellite
observations, the models have a bias of +25 to −20 ppmv in CMIP5 and +20
to −15 ppmv in CMIP6, with the multi-model mean biases at +10
and +2 ppmv, respectively. The derived mean atmospheric XCO2 growth
rate (GR) of 2.0 ppmv yr−1 is overestimated by 0.4 ppmv yr−1 in
CMIP5 and 0.3 ppmv yr−1 in CMIP6 for the multi-model mean, with a good
reproduction of the interannual variability. All models capture the expected
increase of the seasonal cycle amplitude (SCA) with increasing latitude, but
most models underestimate the SCA. Any SCA derived from data with missing
values can only be considered an “effective” SCA, as the missing values
could occur at the peaks or troughs. The satellite data are a combined data
product covering the period 2003–2014 based on the Scanning Imaging Absorption
Spectrometer for Atmospheric Chartography (SCIAMACHY)/Envisat
(2003–2012) and Thermal And Near infrared Sensor for carbon Observation
Fourier transform spectrometer/Greenhouse Gases Observing Satellite
(TANSO-FTS/GOSAT) (2009–2014) instruments. While the
combined satellite product shows a strong negative trend of decreasing
effective SCA with increasing XCO2 in the northern midlatitudes, both
CMIP ensembles instead show a non-significant positive trend in the
multi-model mean. The negative trend is reproduced by the models when
sampling them as the observations, attributing it to sampling
characteristics. Applying a mask of the mean data coverage of each satellite
to the models, the effective SCA is higher for the SCIAMACHY/Envisat mask
than when using the TANSO-FTS/GOSAT mask. This induces an artificial
negative trend when using observational sampling over the full period, as
SCIAMACHY/Envisat covers the early period until 2012, with TANSO-FTS/GOSAT
measurements starting in 2009. Overall, the CMIP6 ensemble shows better
agreement with the satellite data than the CMIP5 ensemble in all considered
quantities (XCO2, GR, SCA and trend in SCA). This study shows that the
availability of column-integral CO2 from satellite provides a promising
new way to evaluate the performance of Earth system models on a global
scale, complementing existing studies that are based on in situ measurements
from single ground-based stations.
Funder
European Space Agency Horizon 2020
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference106 articles.
1. Adachi, Y., Yukimoto, S., Deushi, M., Obata, A., Nakano, H., Tanaka, T. Y.,
Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Shindo, E., Tsujino,
H., Mizuta, R., Yabu, S., Koshiro, T., Ose, T., and Kitoh, A.: Basic
performance of a new earth system model of the Meteorological Research
Institute (MRI-ESM1), Pap. Meteorol. Geophys., 64, 1–19,
https://doi.org/10.2467/mripapers.64.1, 2013. 2. Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P.,
Jones, C., Jung, M., Myneni, R., and Zhu, Z.: Evaluating the Land and Ocean
Components of the Global Carbon Cycle in the CMIP5 Earth System Models, J.
Climate, 26, 6801–6843, https://doi.org/10.1175/Jcli-D-12-00417.1, 2013. 3. Andela, B., Broetz, B., de Mora, L., Drost, N., Eyring, V., Koldunov,N., Lauer, A., Mueller, B., Predoi, V., Righi, M., Schlund, M.,Vegas-Regidor, J., Zimmermann, K., Adeniyi, K., Arnone, E.,Bellprat, O., Berg, P., Bock, L., Caron, L.-P., Carvalhais, N., Cionni, I., Cortesi, N., Corti, S., Crezee, B., Davin, E. L., Davini,P., Deser, C., Diblen, F., Docquier, D., Dreyer, L., Ehbrecht,C., Earnshaw, P., Gier, B., Gonzalez-Reviriego, N., Goodman,P., Hagemann, S., von Hardenberg, J., Hassler, B., Hunter, A., Kadow, C., Kindermann, S., Koirala, S., Lledó, L., Lejeune, Q.,Lembo, V., Little, B., Loosveldt-Tomas, S., Lorenz, R., Lovato,T., Lucarini, V., Massonnet, F., Mohr, C. W., Amarjiit, P., Pérez-Zanón, N., Phillips, A., Russell, J., Sandstad, M., Sellar, A., Sen-ftleben, D., Serva, F., Sillmann, J., Stacke, T., Swaminathan, R., Torralba, V., and Weigel, K.: ESMValTool (Version v2.0.0), Zenodo, https://doi.org/10.5281/zenodo.3401363, 2020a. 4. Andela, B., Broetz, B., de Mora, L., Drost, N., Eyring, V., Koldunov, N., Lauer, A., Predoi, V., Righi, M., Schlund, M., Vegas-Regidor, J., Zimmermann, K., Bock, L., Diblen, F., Dreyer, L., Earnshaw, P., Hassler, B., Little, B., Loosveldt-Tomas, S., Smeets, S., Camphuijsen, J., Gier, B.K., Weigel, K., Hauser, M., Kalverla, P., Galytska, E., Cos-Espuña, P., Pelupessy, I., Koirala, S., Stacke, T., Alidoost, S., and Jury, M.: ESMValCore, https://doi.org/10.5281/zenodo.3387139, 2020b. 5. Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L.,
Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon
emission limits required to satisfy future representative concentration
pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805,
https://doi.org/10.1029/2010gl046270, 2011.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|