Upper stratospheric ClO and HOCl trends (2005–2020): Aura Microwave Limb Sounder and model results

Author:

Froidevaux Lucien,Kinnison Douglas E.ORCID,Santee Michelle L.,Millán Luis F.,Livesey Nathaniel J.,Read William G.,Bardeen Charles G.,Orlando John J.,Fuller Ryan A.

Abstract

Abstract. We analyze Aura Microwave Limb Sounder (MLS) monthly zonal mean time series of ClO and HOCl between 50∘ S and 50∘ N to estimate upper stratospheric trends in these chlorine species from 2005 through 2020. We compare these observations to those from the Whole Atmosphere Community Climate Model version 6 (WACCM6), run under the specified dynamics configuration. The model sampling follows the MLS coverage in space and local time. We use version 5 MLS ClO zonal mean daytime profiles and similarly binned daytime ClO model profiles from 32 to 1.5 hPa. For MLS HOCl, we use the version 5 offline product derived from daily zonal mean radiances rather than averaged level-2 profiles; MLS HOCl is scientifically useful between 10 and 2 hPa, and the HOCl monthly zonal means are separated into day and night for comparison to WACCM6. We find good agreement (mostly within ∼ 10 %) between the climatological MLS ClO daytime distributions and the model ClO climatology for 2005–2020. The model HOCl climatology, however, underestimates the MLS HOCl climatology by about 30 %. This could well be caused by a combination of fairly large systematic uncertainties in both the model-assumed rate constant for the formation of HOCl and the MLS HOCl retrievals themselves. The model daytime ClO trends versus latitude and pressure agree quite well with those from MLS. MLS-derived near-global upper stratospheric daytime trends between 7 and 2 hPa are −0.73 ± 0.40 % yr−1 for ClO and −0.39 ± 0.35 % yr−1 for HOCl, with 2σ uncertainty estimates used here. The corresponding model decreases are somewhat faster than observed (although the difference is not statistically significant), with trend values of −0.85 ± 0.45 % yr−1 for ClO and −0.64 ± 0.37 % yr−1 for HOCl. Both data and model results point to a faster trend in ClO than in HOCl. The MLS ClO trends are consistent with past estimates of upper stratospheric ClO trends from satellite and ground-based microwave data. As discussed in the past, trends in other species (in particular, positive trends in CH4 and H2O) can lead to a ClO decrease that is faster than the decrease in total inorganic chlorine. Regarding trends in HOCl, positive trends in HO2 can lead to a faster rate of formation for HOCl as a function of time, which partially offsets the decreasing trend in active chlorine. The decreasing trends in upper stratospheric ClO and HOCl provide additional confirmation of the effectiveness of the Montreal Protocol and its amendments, which have led to the early stages of an expected long-term ozone recovery from the effects of ozone-depleting substances.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Version 5 retrievals for ACE-FTS and ACE-imagers;Journal of Quantitative Spectroscopy and Radiative Transfer;2023-12

2. Observed changes in stratospheric circulation: decreasing lifetime of N2O, 2005–2021;Atmospheric Chemistry and Physics;2023-01-18

3. Faster Tropical Upper Stratospheric Upwelling Drives Changes in Ozone Chemistry;Geophysical Research Letters;2022-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3