Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants
-
Published:2022-04-01
Issue:6
Volume:22
Page:4253-4275
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Wolfe Glenn M.ORCID, Hanisco Thomas F.ORCID, Arkinson Heather L., Blake Donald R., Wisthaler Armin, Mikoviny Tomas, Ryerson Thomas B.ORCID, Pollack IlanaORCID, Peischl JeffORCID, Wennberg Paul O.ORCID, Crounse John D.ORCID, St. Clair Jason M.ORCID, Teng Alex, Huey L. GregoryORCID, Liu Xiaoxi, Fried Alan, Weibring PetterORCID, Richter Dirk, Walega James, Hall Samuel R., Ullmann Kirk, Jimenez Jose L.ORCID, Campuzano-Jost PedroORCID, Bui T. Paul, Diskin GlennORCID, Podolske James R., Sachse Glen, Cohen Ronald C.ORCID
Abstract
Abstract. Large wildfires influence regional atmospheric composition, but chemical complexity challenges model predictions of downwind impacts. Here, we elucidate key connections within gas-phase photochemistry and assess novel chemical processes via a case study of the 2013 California Rim Fire plume. Airborne in situ observations, acquired during the NASA Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission, illustrate the evolution of volatile organic compounds (VOCs), oxidants, and reactive nitrogen over 12 h of atmospheric aging. Measurements show rapid formation of ozone and peroxyacyl
nitrates (PNs), sustained peroxide production, and prolonged enhancements in oxygenated VOCs and nitrogen oxides (NOx). Observations and Lagrangian trajectories constrain a 0-D puff model that approximates plume photochemical history and provides a framework for evaluating process interactions. Simulations examine the effects of (1) previously unmeasured reactive VOCs identified in recent laboratory studies
and (2) emissions and secondary production of nitrous acid (HONO). Inclusion of estimated unmeasured VOCs leads to a 250 % increase in OH reactivity and a 70 % increase in radical production via oxygenated VOC photolysis. HONO
amplifies radical cycling and serves as a downwind NOx source, although impacts depend on how HONO is introduced. The addition of initial HONO (representing primary emissions) or particulate nitrate photolysis amplifies ozone production, while heterogeneous conversion of NO2 suppresses ozone formation. Analysis of radical initiation rates suggests that
oxygenated VOC photolysis is a major radical source, exceeding HONO photolysis when averaged over the first 2 h of aging. Ozone production chemistry transitions from VOC sensitive to NOx sensitive within the first hour of plume aging, with both peroxide and organic nitrate formation contributing significantly to radical termination. To simulate smoke plume chemistry accurately, models should simultaneously account for the full reactive VOC pool and all relevant oxidant sources.
Funder
Earth Sciences Division Climate Program Office
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference96 articles.
1. Adler, G., Wagner, N. L., Lamb, K. D., Manfred, K. M., Schwarz, J. P.,
Franchin, A., Middlebrook, A. M., Washenfelder, R. A., Womack, C. C.,
Yokelson, R. J., and Murphy, D. M.: Evidence in biomass burning smoke for a
light-absorbing aerosol with properties intermediate between brown and black
carbon, AEROSOL Sci. Technol., 53, 976–989,
https://doi.org/10.1080/02786826.2019.1617832, 2019. 2. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S.,
Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and
domestic biomass burning for use in atmospheric models, Atmos. Chem.
Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 3. Akagi, S. K., Craven, J. S., Taylor, J. W., Mcmeeking, G. R., Yokelson, R.
J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J. H., Coe, H.,
Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and particles
emitted by a chaparral fire in California, Atmos. Chem. Phys., 12,
1397–1421, https://doi.org/10.5194/acp-12-1397-2012, 2012. 4. Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D. R.: Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, 2013. 5. Allen, H. M., Crounse, J. D., Bates, K. H., Teng, A. P., Krawiec-thayer, M.
P., Rivera-rios, J. C., Keutsch, F. N., Clair, J. M. S., Hanisco, T. F.,
Møller, K. H., Kjaergaard, H. G., and Wennberg, P. O.: Kinetics and
Product Yields of the OH Initiated Oxidation of Hydroxymethyl Hydroperoxide,
J. Phys. Chem. A, 122, 6292–6302, https://doi.org/10.1021/acs.jpca.8b04577,
2018.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|