Zooplankton diel vertical migration and downward C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile

Author:

Tutasi PrithaORCID,Escribano Ruben

Abstract

Abstract. Diel vertical migration (DVM) can enhance the vertical flux of carbon (C), and so contributes to the functioning of the biological pump in the ocean. The magnitude and efficiency of this active transport of C may depend on the size and taxonomic structure of the migrant zooplankton. However, the impact that a variable community structure can have on zooplankton-mediated downward C flux has not been properly addressed. This taxonomic effect may become critically important in highly productive eastern boundary upwelling systems (EBUSs), where high levels of zooplankton biomass are found in the coastal zone and are composed by a diverse community with variable DVM behavior. In these systems, presence of a subsurface oxygen minimum zone (OMZ) can impose an additional constraint to vertical migration and so influence the downward C export. Here, we address these issues based on a vertically stratified zooplankton sampling at three stations off northern Chile (20–30∘ S) during November–December 2015. Automated analysis of zooplankton composition and taxa-structured biomass allowed us to estimate daily migrant biomass by taxa and their amplitude of migration. We found that a higher biomass aggregates above the oxycline, associated with more oxygenated surface waters and this was more evident upon a more intense OMZ. Some taxonomic groups, however, were found closely associated with the OMZ. Most taxa were able to perform DVM in the upwelling zone withstanding severe hypoxia. Also, strong migrants, such as eucalanid copepods and euphausiids, can exhibit a large migration amplitude (∼500 m), remaining either temporarily or permanently within the core of the OMZ and thus contributing to the release of C below the thermocline. Our estimates of DVM-mediated C flux suggested that a mean migrant biomass of ca. 958 mg C m−2 d−1 may contribute with about 71.3 mg C m−2 d−1 to the OMZ system through respiration, mortality and C excretion at depth, accounting for ca. 4 % of the net primary production, and so implies the existence of an efficient mechanism to incorporate freshly produced C into the OMZ. This downward C flux mediated by zooplankton is however spatially variable and mostly dependent on the taxonomic structure due to variable migration amplitude and DVM behavior.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3