Greenhouse gas emissions from natural ecosystems and agricultural lands in sub-Saharan Africa: synthesis of available data and suggestions for further research

Author:

Kim Dong-GillORCID,Thomas Andrew D.,Pelster David,Rosenstock Todd S.,Sanz-Cobena AlbertoORCID

Abstract

Abstract. This paper summarizes currently available data on greenhouse gas (GHG) emissions from African natural ecosystems and agricultural lands. The available data are used to synthesize current understanding of the drivers of change in GHG emissions, outline the knowledge gaps, and suggest future directions and strategies for GHG emission research. GHG emission data were collected from 75 studies conducted in 22 countries (n =  244) in sub-Saharan Africa (SSA). Carbon dioxide (CO2) emissions were by far the largest contributor to GHG emissions and global warming potential (GWP) in SSA natural terrestrial systems. CO2 emissions ranged from 3.3 to 57.0 Mg CO2 ha−1 yr−1, methane (CH4) emissions ranged from −4.8 to 3.5 kg ha−1 yr−1 (−0.16 to 0.12 Mg CO2 equivalent (eq.) ha−1 yr−1), and nitrous oxide (N2O) emissions ranged from −0.1 to 13.7 kg ha−1 yr−1 (−0.03 to 4.1 Mg CO2 eq. ha−1 yr−1). Soil physical and chemical properties, rewetting, vegetation type, forest management, and land-use changes were all found to be important factors affecting soil GHG emissions from natural terrestrial systems. In aquatic systems, CO2 was the largest contributor to total GHG emissions, ranging from 5.7 to 232.0 Mg CO2 ha−1 yr−1, followed by −26.3 to 2741.9 kg CH4 ha−1 yr−1 (−0.89 to 93.2 Mg CO2 eq. ha−1 yr−1) and 0.2 to 3.5 kg N2O ha−1 yr−1 (0.06 to 1.0 Mg CO2 eq. ha−1 yr−1). Rates of all GHG emissions from aquatic systems were affected by type, location, hydrological characteristics, and water quality. In croplands, soil GHG emissions were also dominated by CO2, ranging from 1.7 to 141.2 Mg CO2 ha−1 yr−1, with −1.3 to 66.7 kg CH4 ha−1 yr−1 (−0.04 to 2.3 Mg CO2 eq. ha−1 yr−1) and 0.05 to 112.0 kg N2O ha−1 yr−1 (0.015 to 33.4 Mg CO2 eq. ha−1 yr−1). N2O emission factors (EFs) ranged from 0.01 to 4.1 %. Incorporation of crop residues or manure with inorganic fertilizers invariably resulted in significant changes in GHG emissions, but results were inconsistent as the magnitude and direction of changes were differed by gas. Soil GHG emissions from vegetable gardens ranged from 73.3 to 132.0 Mg CO2 ha−1 yr−1 and 53.4 to 177.6 kg N2O ha−1 yr−1 (15.9 to 52.9 Mg CO2 eq. ha−1 yr−1) and N2O EFs ranged from 3 to 4 %. Soil CO2 and N2O emissions from agroforestry were 38.6 Mg CO2 ha−1 yr−1 and 0.2 to 26.7 kg N2O ha−1 yr−1 (0.06 to 8.0 Mg CO2 eq. ha−1 yr−1), respectively. Improving fallow with nitrogen (N)-fixing trees led to increased CO2 and N2O emissions compared to conventional croplands. The type and quality of plant residue in the fallow is an important control on how CO2 and N2O emissions are affected. Throughout agricultural lands, N2O emissions slowly increased with N inputs below 150 kg N ha−1 yr−1 and increased exponentially with N application rates up to 300 kg N ha−1 yr−1. The lowest yield-scaled N2O emissions were reported with N application rates ranging between 100 and 150 kg N ha−1. Overall, total CO2 eq. emissions from SSA natural ecosystems and agricultural lands were 56.9 ± 12.7  ×  109 Mg CO2 eq. yr−1 with natural ecosystems and agricultural lands contributing 76.3 and 23.7 %, respectively. Additional GHG emission measurements are urgently required to reduce uncertainty on annual GHG emissions from the different land uses and identify major control factors and mitigation options for low-emission development. A common strategy for addressing this data gap may include identifying priorities for data acquisition, utilizing appropriate technologies, and involving international networks and collaboration.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3