Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires

Author:

Deng YangeORCID,Tanimoto HiroshiORCID,Ikeda Kohei,Kameyama Sohiko,Okamoto SachikoORCID,Jung JinyoungORCID,Yoon Young Jun,Yang Eun Jin,Kang Sung-Ho

Abstract

Abstract. Black carbon (BC) aerosol is considered one of the most important contributors to rapid climate warming as well as snow and sea ice melting in the Arctic, yet the observations of BC aerosols in the Arctic Ocean have been limited due to infrastructural and logistical difficulties. We observed BC mass concentrations (mBC) using light absorption methods on board the icebreaker R/V Araon in the Arctic Ocean (< 80° N and 166° E to 156° W) as well as the North Pacific Ocean in summer and early autumn of 2016–2020. The levels, interannual variations, and pollution episodes of mBC in the Arctic were examined, and the emission sources responsible for the high-BC episodes were analyzed with global chemistry-transport-model simulations. The average mBC in the surface air over the Arctic Ocean (72–80° N) observed by the 2019 cruise exceeded 70 ng m−3, which was substantially higher than that observed by cruises in other years (approximately 10 ng m−3). The much higher mBC observed in 2019 was perhaps due to more frequent wildfires occurring in the Arctic region than in other years. The model suggested that biomass burning contributed most to the observed BC by mass in the western Arctic Ocean and the marginal seas. For these 5 years, we identified 10 high-BC episodes north of 65° N, including one in 2018 that was associated with co-enhancements of CO and CH4 but not CO2 and O3. The model analysis indicated that certain episodes were attributed to BC-containing air masses transported from boreal fire regions to the Arctic Ocean, with some transport occurring near the surface and others in the mid-troposphere. This study provides crucial datasets on BC mass concentrations and the mixing ratios of O3, CH4, CO, and CO2 in the western Arctic Ocean regions, and it highlights the significant impact of boreal fires on the observed Arctic BC during the summer and early autumn months.

Funder

Ministry of Oceans and Fisheries

Ministry of the Environment, Government of Japan

Japan Society for the Promotion of Science

National Research Foundation of Korea

Publisher

Copernicus GmbH

Reference65 articles.

1. AMAP: The Impact of Black Carbon on Arctic Climate, Oslo, Norway, 72 pp., ISBN 978-82-7971-069-1, 2011.

2. AMAP: AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers, Oslo, Norway, vii+116 pp., ISBN 978-82-7971-092-9, 2015.

3. AMAP: AMAP Arctic Climate Change Update 2021: Key Trends and Impacts, Tromsø, Norway, viii+148 pp., ISBN 978-82-7971-201-5, 2021a.

4. AMAP: AMAP Assessment 2021: Impacts of Short-lived Climate Forcers on Arctic Climate, Air Quality, and Human Health, Tromsø, Norway, x+375 pp., ISBN 978-82-7971-202-2, 2021b.

5. Andreae, M. O., Anderson, B. E., Blake, D. R., Bradshaw, J. D., Collins, J. E., Gregory, G. L., Sachse, G. W., and Shipham, M. C.: Influence of plumes from biomass burning on atmospheric chemistry over the equatorial and tropical South Atlantic during CITE 3, J. Geophys. Res.-Atmos., 99, 12793–12808, https://doi.org/10.1029/94JD00263, 1994.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3