A multiphase CMAQ version 5.0 adjoint
-
Published:2020-07-02
Issue:7
Volume:13
Page:2925-2944
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Zhao ShunliuORCID, Russell Matthew G., Hakami Amir, Capps Shannon L., Turner Matthew D., Henze Daven K., Percell Peter B., Resler JaroslavORCID, Shen HuizhongORCID, Russell Armistead G.ORCID, Nenes AthanasiosORCID, Pappin Amanda J., Napelenok Sergey L., Bash Jesse O.ORCID, Fahey Kathleen M., Carmichael Gregory R., Stanier Charles O.ORCID, Chai TianfengORCID
Abstract
Abstract. We present the development of a multiphase adjoint for
the Community Multiscale Air Quality (CMAQ) model, a widely used chemical
transport model. The adjoint model provides location- and time-specific gradients
that can be used in various applications such as backward sensitivity
analysis, source attribution, optimal pollution control, data assimilation,
and inverse modeling. The science processes of the CMAQ model include
gas-phase chemistry, aerosol dynamics and thermodynamics, cloud chemistry and dynamics, diffusion, and
advection. Discrete adjoints are implemented for all the science processes,
with an additional continuous adjoint for advection. The development of
discrete adjoints is assisted with algorithmic differentiation (AD) tools.
Particularly, the Kinetic PreProcessor (KPP) is implemented for gas-phase
and aqueous chemistry, and two different automatic differentiation tools are
used for other processes such as clouds, aerosols, diffusion, and advection.
The continuous adjoint of advection is developed manually. For adjoint
validation, the brute-force or finite-difference method (FDM) is implemented
process by process with box- or column-model simulations. Due to the
inherent limitations of the FDM caused by numerical round-off errors, the
complex variable method (CVM) is adopted where necessary. The adjoint model
often shows better agreement with the CVM than with the FDM. The adjoints of
all science processes compare favorably with the FDM and CVM. In an example
application of the full multiphase adjoint model, we provide the first
estimates of how emissions of particulate matter (PM2.5) affect public health across the US.
Funder
Health Effects Institute Health Canada Natural Sciences and Engineering Research Council of Canada H2020 European Research Council
Publisher
Copernicus GmbH
Reference84 articles.
1. Anderson, W. K. and Nielsen, E.: Sensitivity Analysis for Navier–Stokes
Equations on Unstructured Grids Using Complex Variables, AIAA J., 39, 56–63, https://doi.org/10.2514/2.1270, 2001. 2. Bartholomew-Biggs, M. C.: Using forward accumulation for automatic
differentiation of implicitly-defined functions, Comput. Optim. Appl., 9,
65–84, https://doi.org/10.1023/A:1018382103801, 1998. 3. Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air
Quality (CMAQ) model aerosol component 1. Model description, J. Geophys.
Res.-Atmos., 108, 4183, https://doi.org/10.1029/2001JD001409, 2003. 4. Brook, R. D., Rajagopalan, S., Pope III, C. A., Brook, J. R., Bhatnagar, A.,
Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A.,
Peters, A., Siscovick, D., Smith Jr., S. C., Whitsel, L., and Kaufman, J. D.:
Particulate matter air pollution and cardiovascular disease: an update to
the scientific statement from the American Heart Association, Circ.,
121, 2331–2378, https://doi.org/10.1161/CIR.0b013e3181dbece1, 2010. 5. Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., Hubbell, B., Pope III, C. A.,
Apte, J. S., Brauer, M., Cohen, A., Weichenthal, S., Coggins, J., Di, Q.,
Brunekreef, B., Frostad, J., Lim, S. S., Kan, H., Walker, K. D., Thurston, G. D.,
Hayes, R. B., Lim, C. C., Turner, M. C., Jerrett, M., Krewski, D., Gapstur, S. M.,
Diver, W. R., Ostro, B., Goldberg, D., Crouse, D. L., Martin, R. V., Peters, P.,
Pinault, L., Tjepkema, M., van Donkelaar, A., Villeneuve, P. J., Miller, A. B.,
Yin, P., Zhou, M., Wang, L., Janssen, N. A. H., Marra, M., Atkinson, R. W., Tsang,
H., Quoc Thach, T., Cannon, J. B., Allen, R. T., Hart, J. E., Laden, F., Cesaroni,
G., Forastiere, F., Weinmayr, G., Jaensch, A., Nagel, G., Concin, H., and Spadaro, J. V.: Global estimates of mortality associated with long-term exposure to
outdoor fine particulate matter, P. Natl. Acad. Sci. USA, 115,
9592–9597, https://doi.org/10.1073/pnas.1803222115, 2018.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|