Evaluating a fire smoke simulation algorithm in the National Air Quality Forecast Capability (NAQFC) by using multiple observation data sets during the Southeast Nexus (SENEX) field campaign
-
Published:2020-05-07
Issue:5
Volume:13
Page:2169-2184
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Pan LiORCID, Kim HyunCheolORCID, Lee Pius, Saylor Rick, Tang YouHuaORCID, Tong Daniel, Baker Barry, Kondragunta Shobha, Xu Chuanyu, Ruminski Mark G., Chen Weiwei, Mcqueen Jeff, Stajner Ivanka
Abstract
Abstract. Multiple observation data sets – Interagency Monitoring of Protected Visual
Environments (IMPROVE) network data, the Automated Smoke Detection and Tracking
Algorithm (ASDTA), Hazard Mapping System (HMS) smoke plume shapefiles and
aircraft acetonitrile (CH3CN) measurements from the NOAA Southeast
Nexus (SENEX) field campaign – are used to evaluate the HMS–BlueSky–SMOKE (Sparse Matrix Operator Kernel Emission)–CMAQ (Community Multi-scale Air Quality Model)
fire emissions and smoke plume prediction system. A similar configuration is
used in the US National Air Quality Forecasting Capability (NAQFC). The
system was found to capture most of the observed fire signals. Usage of
HMS-detected fire hotspots and smoke plume information was valuable for
deriving both fire emissions and forecast evaluation. This study also
identified that the operational NAQFC did not include fire contributions
through lateral boundary conditions, resulting in significant simulation
uncertainties. In this study we focused both on system evaluation and
evaluation methods. We discussed how to use observational data correctly to
retrieve fire signals and synergistically use multiple data sets. We also
addressed the limitations of each of the observation data sets and
evaluation methods.
Publisher
Copernicus GmbH
Reference59 articles.
1. Achtemeier, G. L., Goodrick, S. A., Liu, Y. Q., Garcia-Menendez, F., Hu, Y.
T., and Odman, M. T.: Modeling Smoke Plume-Rise and Dispersion from Southern
United States Prescribed Burns with Daysmoke, Atmosphere, 2, 358–388,
https://doi.org/10.3390/atmos2030358, 2011. 2. Aiken, A. C., de Foy, B., Wiedinmyer, C., DeCarlo, P. F., Ulbrich, I. M., Wehrli, M. N., Szidat, S., Prevot, A. S. H., Noda, J., Wacker, L., Volkamer, R., Fortner, E., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Paredes-Miranda, G., Arnott, W<span id="page2182"/>. P., Molina, L. T., Sosa, G., Querol, X., and Jimenez, J. L.: Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction, Atmos. Chem. Phys., 10, 5315–5341, https://doi.org/10.5194/acp-10-5315-2010, 2010. 3. Alvarado, M. J., Lonsdale, C. R., Yokelson, R. J., Akagi, S. K., Coe, H., Craven, J. S., Fischer, E. V., McMeeking, G. R., Seinfeld, J. H., Soni, T., Taylor, J. W., Weise, D. R., and Wold, C. E.: Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral, Atmos. Chem. Phys., 15, 6667–6688, https://doi.org/10.5194/acp-15-6667-2015, 2015. 4. Baker, K. R., Woody, M. C., Tonnesen, G. S., Hutzell, W., Pye, H. O. T.,
Beaver, M. R., Pouliot, G., and Pierce, T.: Contribution of regional-scale
fire events to ozone and PM2.5 air quality estimated by photochemical
modeling approaches, Atmos. Environ., 140, 539–554,
https://doi.org/10.1016/j.atmosenv.2016.06.032, 2016. 5. Briggs, G. A.: Plume rise predictions, in: Lectures on air pollution and environmental impact analyses, Boston, 59–111, 1975.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|