Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

Author:

Andreae M. O.,Gelencsér A.

Abstract

Abstract. Although the definition and measurement techniques for atmospheric "black carbon" ("BC") or "elemental carbon'' ("EC") have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ("brown carbon, Cbrown") makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC) in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1) spectral aerosol light absorption measurements near specific combustion sources, (2) observations of spectral properties of water extracts of continental aerosol, (3) laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4) indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of "BC" and "EC" over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine "EC" are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of "BC" suffer from a number of problems: (1) many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2) there is no unique conversion factor between light absorption and "EC" or "BC" concentration in ambient aerosols, and (3) the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our understanding of tropospheric processes, including their influence on UV-irradiance, atmospheric photochemistry and radiative transfer in clouds.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3