Stratigraphic relationships of different terrain units on Ganymede and possible implications towards their evolution

Author:

Baby Namitha Rose,Stephan KatrinORCID,Wagner Roland,Kenkmann Thomas,Collins Geoffrey,Hauber ErnstORCID,Jaumann RalfORCID

Abstract

<p> </p> <p><strong>Introduction</strong></p> <p>The formation of Ganymede’s light terrain and its possible interaction with a subsurface ocean, have made its investigation one of the top goals of the upcoming JUICE mission [1, 2]. In this study we present a detailed stratigraphic analysis of areas that were observed by the Galileo SSI camera at highest possible spatial resolution (scales of ~11 m/pxl) in order to see what information of the light terrain’s stratigraphic position in Ganymede’s surface evolution can be gained from mapping and crater counting results and to identify what still has to be done in order to prepare for the upcoming JUICE mission.</p> <p><strong> </strong></p> <p><strong>Study areas</strong></p> <p>Based on the available data set, we selected four major regions (Region A, B, C and D) that are covered by more than one high-resolution SSI image for our study (Fig. 1): Region A and D from the anti-Jovian hemisphere and Region B and C from sub-Jovian hemisphere. Region A comprises of Byblus Sulcus (G2GSGRVLNS01), Nippur and Philus Sulcus (G2GSNIPPUR01) and the Transitional region (G2GSTRANST01) with the context info provided by the SSI observation G8GSREGCON01. Region B is dominated by Arbela Sulcus (28GSARBELA01+02/ G7GSNICHOL01), Region C is the Harpagia Sulcus region (28GSBRTDRK02, 28GSCALDRA02 and 28GSSMOOTH02) and Region D comprises Erech Sulcus (G8GSERECH01), Mummu and Sippar Sulci (G8GSCALDRA01).</p> <p> </p> <p><strong>Mapping results</strong></p> <p>Geologic maps are prepared for the four regions using ArcGIS. The naming/categorization of geological units follows from [4, 5] but are refined and modified wherever necessary (Fig. 2). Among the light terrain units, ls and lg are the most commonly occurring than li.</p> <p> </p> <p><strong>Stratigraphic correlation:</strong></p> <p>On the whole, the relative ages from crater density measurements (Fig. 5) follow the mapping results. In brief, in Byblus Sulcus the two light terrain units are of similar age from crater counts while lg<sub>3</sub> is younger than lg<sub>2</sub> from crosscutting relationships. (Fig. 2). In case of Region B (Arbela Sulcus), we could find that the age relationship of the two light terrain units and two dark terrain units agree with the relative age inferred from crosscutting relationship (Fig. 3a) In more extensively resurfaced areas of the light terrain the situation appears to be more complex. In Region C, the terrain units ls also have comparatively higher age than lg<em> </em>terrain units (Fig. 3b-3d). In Region D the terrain units (Fig. 4) are highly interrupted by the secondary craters formed during the Osiris and Melkart impact events [6].</p> <p> </p> <p><strong>Discussion </strong></p> <p>We used two most favored chronology models LDM (Lunar Derived Model by [7]) and JCM (Jupiter Comets Model by [8]) (Fig.6). In general, based on the LDM ages the crater densities point to a relatively high age of the light terrain units not much younger that the ancient dark terrain and could imply a relatively short time period of formation for most of our mapped light terrain units. This relatively high age fits into the theory that the light terrain could have formed as a direct result of internal differentiation followed by a global expansion [9]. On the contrary, the JCM derived ages point to a longer formation period of light terrain units around 2 Ga [9]. While the impact chronology in the Jovian system and of its satellites is still not fully solved, newest results infer that the craters on these bodies were created from members of a collisionally evolved impactor family, similar to those in the inner solar system [10]. This does not straightforwardly support the lunar-derived chronology model (LDM) by [7] but allows to derive a Ganymede-specific crater production function empirically from the lunar one. We used this production function to fit our crater distributions and to derive absolute model ages for both model chronologies [7][8].</p> <p> </p> <p><img src="" alt="" /></p> <p><strong>Figure 1:</strong> Regions of Interest in this study with the available Galileo SSI coverage indicated.</p> <p> </p> <p> </p> <p> </p> <p><strong> <img src="" alt="" /></strong></p> <p><strong>Figure 2: </strong>Geologic mapping results for Region A: a) Byblus Sulcus (G2GSGRVLNS01), b) Nippur and Philus Sulcus (G2GSNIPPUR01) and c) the Transitional region (G2TRANST01). The legend applies also to Figures 3 and 4.</p> <p><strong> </strong></p> <p><strong> <img src="" alt="" /></strong></p> <p><strong>Figure 3:</strong> Geologic mapping results for Region B dominated by Arbela Sulcus (28GSARBELA01+02/ G7GSNICHOL01) and Region C by Harpagia Sulcus (b) 28GSBRTDRK02, c) 28GSCALDRA02 and d) 28GSSMOOTH02).</p> <p><strong> <img src="" alt="" /></strong></p> <p><strong>Figure 4:</strong> Geologic mapping results for Region D comprises of a) Erech (G8GSERECH01) and b) Mummu and Sippar Sulci (G8GSCALDRA01).</p> <p> </p> <p> </p> <p><strong> <img src="" alt="" /></strong></p> <p><strong>Figure 5: </strong>Comparison of relative ages of different terrain units from a) Region A (Byblus Sulcus), b) Region B (Arbela Sulcus), c) Region C (Harpagia Sulcus - 28GSBRTDRK02) and d) Region D (Erech Sulcus) based on crater size frequency distributions.</p> <p><strong> </strong></p> <p><strong> </strong></p> <p> </p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p> </p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> </strong></p> <p><strong> <img src="" alt="" /></strong></p> <p><strong>Figure 6: </strong>Stratigraphic correlation of Region a) A, b) B, c) C and d) D in which relative ages are determined by plotting the N(10) values with respect to each terrain units and corresponding ages based on LDM [7] and JCM [8]models. Please note that ages of fresh impact craters such as Nergal (N), Kittu (K), Enkidu (E), Melkart (M) and Osiris (O) have been added as additional stratigraphic markers. Since terrain types often appear more than one time in a geologic map the different facies are indicated by different colors.</p> <p><strong> </strong></p> <p><strong>References: </strong></p> <p><strong>[1]</strong> Grasset, O., et al.: Planetary and Space Science, 78, 1-21, 2013. <strong>[2]</strong> Stephan, K., et al.: Planetary and space science, 208, 105324, 2021. <strong>[3]</strong> Pappalardo, R. T., et al.: Jupiter: The Planet, Satellites and Magnetosphere, 363-396, 2004<strong>.</strong> <strong>[4]</strong> Collins, G.C., et al.: Global geologic map of Ganymede (p. 3237), US Geological Survey, 2013.<strong> </strong> <strong>[5]</strong> Patterson, G. W. et al.: Icarus, 207, 845-867, 2010. <strong>[6]</strong> Baby, N. R., et al.: LPI Contributions, 2678, abstr. #1350, 2022. <strong>[7]</strong> Neukum, G., et al.: LPSC XXIX, abstr. #1742, 1998. <strong>[8]</strong> Zahnle, K., et al.: Icarus 163, 263-289, 2003. <strong>[9]</strong> Bland, M. T. et al. : Icarus 200, 207- 221, 2009. <strong>[10]</strong> Bottke et al.: LPSC, #2638, 2022.</p> <p> </p> <p> </p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3