Nutrient release and flux dynamics of CO2, CH4, and N2O in a coastal peatland driven by actively induced rewetting with brackish water from the Baltic Sea

Author:

Pönisch Daniel L.ORCID,Breznikar AnneORCID,Gutekunst Cordula N.,Jurasinski GeraldORCID,Voss MarenORCID,Rehder GregorORCID

Abstract

Abstract. The rewetting of drained peatlands supports long-term nutrient removal in addition to reducing emissions of carbon dioxide (CO2) and nitrous oxide (N2O). However, rewetting may lead to short-term nutrient leaching into adjacent water and high methane (CH4) emissions. The consequences of rewetting with brackish water on nutrient and greenhouse gas (GHG) fluxes remain unclear, although beneficial effects such as lower CH4 emissions seem likely. Therefore, we studied the actively induced rewetting of a coastal peatland with brackish water, by comparing pre- and post-rewetting data from the peatland and the adjacent bay. Both the potential transport of nutrients into adjacent coastal water and the shift in GHG fluxes (CO2, CH4, and N2O) accompanying the change from drained to inundated conditions were analyzed based on measurements of the surface water concentrations of nutrients (dissolved inorganic nitrogen, DIN, and phosphate, PO43-), oxygen (O2), components of the CO2 system, CH4, and N2O together with manual closed-chamber measurements of GHG fluxes. Our results revealed higher nutrient concentrations in the rewetted peatland than in the adjacent bay, indicating that nutrients leached out of the peat and were exported to the bay. A comparison of DIN concentrations of the bay with those of an unaffected reference station showed a significant increase after rewetting. The maximum estimated nutrient export (mean ± 95 % confidence level) out of the peatland was calculated to be 33.8 ± 9.6 t yr−1 for DIN-N and 0.24 ± 0.29 t yr−1 for PO4-P, depending on the endmember (bay vs. reference station). The peatland was also a source of GHG in the first year after rewetting. However, the spatial and temporal variability decreased, and high CH4 emissions, as reported for freshwater rewetting, did not occur. CO2 fluxes (mean ± SD) decreased slightly from 0.29 ± 0.82 g m−2 h−1 (pre-rewetting) to 0.26 ± 0.29 g m−2 h−1 (post-rewetting). The availability of organic matter (OM) and dissolved nutrients were likely the most important drivers of continued CO2 production. Pre-rewetting CH4 fluxes ranged from 0.13 ± 1.01 mg m−2 h−1 (drained land site) to 11.4 ± 37.5 mg m−2 h−1 (ditch). After rewetting, CH4 fluxes on the formerly dry land increased by 1 order of magnitude (1.74 ± 7.59 mg m−2 h−1), whereas fluxes from the former ditch decreased to 8.5 ± 26.9 mg m−2 h−1. These comparatively low CH4 fluxes can likely be attributed to the suppression of methanogenesis and oxidation of CH4 by the available O2 and sulfate in the rewetted peatland, which serve as alternative electron acceptors. The post-rewetting N2O flux was low, with an annual mean of 0.02 ± 0.07 mg m−2 h−1. Our results suggest that rewetted coastal peatlands could account for high, currently unmonitored, nutrient inputs into adjacent coastal water, at least on a short timescale such as a few years. However, rewetting with brackish water may decrease GHG emissions and might be favored over freshwater rewetting in order to reduce CH4 emissions.

Funder

Deutsche Forschungsgemeinschaft

Deutsche Bundesstiftung Umwelt

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference123 articles.

1. Augustin, J. (Ed.): Gaseous emissions from constructed wetlands and (re)flooded meadows, in: International Conference: Constructed and Riverine Wetlands for Optimal Control of Wastewater at Catchment Scale, edited by: Mander, Ü., Vohla, C., and Poom, A., Tartu Univ. Press, ISBN 9985-4-0356-8, 2003.

2. Augustin, J. and Chojnicki, B.: Austausch von klimarelevanten Spurengasen, Klimawirkung und Kohlenstoffdynamik in den ersten Jahren nach Wiedervernässung von degradiertem Niedermoorgrünland, Berichte des Leibniz-Institut für Gewässerökologie und Binnenfischerei, edited by: Gelbrecht, J., Zak, D., and Augustin, J., 50–61, 2008.

3. Augustin, J., Merbach, W., Steffens, L., and Snelinski, B.: Nitrous Oxide Fluxes Of Disturbed Minerotrophic Peatlands, Agribiol. Res., 51, 47–57, 1998.

4. Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O.: Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane, Global Biogeochem. Cy., 8, 465–480, https://doi.org/10.1029/94GB02181, 1994.

5. Bange, H. W., Dahlke, S., Ramesh, R., Meyer-Reil, L.-A., Rapsomanikis, S., and Andreae, M. O.: Seasonal Study of Methane and Nitrous Oxide in the Coastal Waters of the Southern Baltic Sea, Estuar. Coast. Shelf S., 47, 807–817, https://doi.org/10.1006/ecss.1998.0397, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3