Changes in high-intensity precipitation on the northern Apennines (Italy) as revealed by multidisciplinary data over the last 9000 years

Author:

Segadelli Stefano,Grazzini FedericoORCID,Rossi Veronica,Aguzzi Margherita,Marvelli Silvia,Marchesini Marco,Chelli Alessandro,Francese Roberto,De Nardo Maria Teresa,Nanni Sandro

Abstract

Abstract. Several record-breaking precipitation events have struck the mountainous area of the Emilia–Romagna region (northern Apennines, Italy) over the last 10 years. As a consequence, severe geomorphological processes such as debris avalanches and debris flows, shallow landslides, and overbank flooding have affected the territory, causing severe damage to human-made structures. The unusual intensity of these phenomena prompted an investigation into their frequency in the past, beyond instrumental time. In the quest for an understanding of whether these phenomena are unprecedented in the region, peat bog and lake deposits were analyzed to infer the frequency of extreme precipitation events that may have occurred in the past. We present the results of a dedicated field campaign performed in summer 2017 at Lake Moo in the northern Apennines, a 0.15 km2 peat bog located at an altitude of 1130 m a.s.l. During the extreme precipitation event of 13–14 September 2015, several debris flows generated by small streams affected the Lake Moo plain. In such a small drainage basin (<2 km2), high-density floods can be triggered only by high-intensity precipitation events. The sedimentary succession (ca. 13 m thick) was studied through the drilling of two cores and one trench. The sequence, characterized by clusters of coarse-grained alluvial deposits interbedded with organic-rich silty clays and peat layers, was analyzed by combining sedimentological, pollen, microanthracological and pedological data with radiocarbon dating (AMS 14C) in an innovative multidisciplinary approach for this area. Original data acquired during the field campaign were also correlated with other specific paleoclimatic proxies available in the literature for the northern Apennines area. We discover that the increase in extreme paleoflooding, associated with coarse-grained deposits similar to the ones observed recently, correlates well with the warm phases of the Holocene Thermal Maximum and with the ongoing warming trend observed that started at the beginning of the last century.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Reference87 articles.

1. Accorsi, C. A., Bandini Mazzanti, M., Forlani, L., Mercuri, A. M., and Trevisan Grandi, G.: An overview of Holocene forest pollen flora/vegetation of the Emilia Romagna region – Northern Italy, Archivio Geobotanico, 5, 3–27, 1999.

2. Ahlborn, M., Armon, M., Ben Dor, Y., Neugebauer, I., Schwab, M. J., Tjallingii, R., Shoqeir, J. H., Morin, E., Enzel, Y., and Brauer, A.: Increased frequency of torrential rain storms during a regional late Holocene eastern Mediterranean drought, Quaternary Res., 89, 425–431, https://doi.org/10.1017/qua.2018.9, 2018.

3. Anselmetti, F., Wirth, S. B., Glur, L., and Gilli, A.: Holocene flood frequency as reconstructed by lake sediments from multiple archives: A record influenced by solar forcing and atmospheric circulation patterns, in: Late Pleistocene and Holocene climatic variability in the Carpathian-Balkan region, Abstracts Volume, edited by: Mindrescu, M. and Gradinaru, I., Special Issue, Scientific Annals of Stefan cel Mare University of Suceava Geography Series, 24, 1–2, 2014.

4. Antolini, G., Auteri, L., Pavan, V., Tomei, F., Tomozeiu, R., and Marletto, V.: A daily high-resolution gridded climatic data set for Emilia-Romagna, Italy, during 1961–2010, Int. J. Climatol., 36, 1970–1986, https://doi.org/10.1002/joc.4473, 2016.

5. Ballesteros-Cánovas, J. A., Stoffel, M., St. George, S., and Hirschboeck, K.: A review of flood records from tree rings, Prog. Phys. Geogr., 39, 1–23, https://doi.org/10.1177/0309133315608758, 2015.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3