The potential for using video games to teach geoscience: learning about the geology and geomorphology of Hokkaido (Japan) from playing Pokémon Legends: Arceus

Author:

McGowan Edward G.ORCID,Alcott Lewis J.

Abstract

Abstract. In recent years, video games, as a geoscience communication tool, have gained momentum. Popular commercial video games see millions of people around the world immersed in wondrous landscapes, many filled with real geological features including volcanoes, mineral deposits, and dinosaurs. Even though these features can be overlooked by many players as simple video game tropes, if utilized in educational environments or scientific outreach events, video games have the potential to encourage and stimulate teaching of geoscientific concepts, both in the classroom or in their own time. Here, we focus on the geo-educational potential of Pokémon Legends: Arceus, the latest game in the popular Pocket-Monster franchise, Pokémon. Pokémon Legends: Arceus is set in a fictional landscape, Hisui, that is directly based on the real-world island of Hokkaido, northern Japan. Both formal (peer-reviewed literature) and informal (online websites) resources are used to explore in-game and real-world geological feature comparisons and assess the game's educational potential. This paper demonstrates that a single commercial video game can be used to explore a variety of geological and geomorphological concepts including volcanology, economic geology, and hazard mitigation, with direct real-world examples to support the geoscientific understanding. Applications for this study could be extremely useful, not only for increasing interest and facilitating the self-learning of geoscience worldwide, but also for teaching in educational environments. From an educational standpoint, Pokémon Legends: Arceus could be used as a powerful tool to help students engage more in their learning by utilizing their natural affinity to the popular game and showcasing the many geological and geomorphological features found across the landscape of Hisui.

Publisher

Copernicus GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Communication

Reference73 articles.

1. 633highland: Lake Toya Toyako Hokkaido (photo), Wikimedia Commons, https://commons.wikimedia.org/w/index.php?curid=28499249 (last access: 8 March 2022), 2013a.

2. 663highland: Lake Kussharo seen from the west, in Teshikaga, Hokkaido Prefecture, Japan, Wikimedia Commons, https://commons.wikimedia.org/w/index.php?curid=27737997 (last access: 25 June 2022), 2013b.

3. Adams, P. C.: Teaching and learning with SimCity 2000, J. Geogr., 97, 47–55, 1998.

4. Akai, F.: The Terminal Pleistocene Microblade Industry In Hokkaido (Japan): A Case Of The Southern Ishikari Lowland, Kunstkamera, https://kunstkamera.ru/files/lib/978-5-02-025271-4/978-5-02-025271-4_09.pdf (last access: 24 February 2022), 2008.

5. Ayalew, L., Kasahara, M., and Yamagishi, H.: The spatial correlation between earthquakes and landslides in Hokkaido (Japan), a GIS-based analysis of the past and the future, Landslides, 8, 433–448, https://doi.org/10.1007/s10346-011-0262-z, 2011.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3