Global patterns and drivers of phosphorus fractions in natural soils

Author:

He Xianjin,Augusto Laurent,Goll Daniel S.ORCID,Ringeval BrunoORCID,Wang Ying-PingORCID,Helfenstein JulianORCID,Huang YuanyuanORCID,Hou EnqingORCID

Abstract

Abstract. Most phosphorus (P) in soils is unavailable for direct biological uptake, as it is locked within primary or secondary mineral particles, adsorbed to mineral surfaces, or immobilized inside of organic material. Deciphering the composition of different P forms in soil is critical for understanding P bioavailability and its underlying dynamics. However, widely used global estimates of different soil P forms are based on a dataset containing few measurements in which many regions or soil types are unrepresented. This poses a major source of uncertainty in assessments that rely on these estimates to quantify soil P constraints on biological activity controlling global food production and terrestrial carbon balance. To address this issue, we consolidated a database of six major soil P “forms” containing 1857 entries from globally distributed (semi-)natural soils and 11 related environmental variables. These six different forms of P (labile inorganic P (Pi), labile organic P (Po), moderately labile Pi, moderately labile Po, primary mineral P, and occluded P) were measured using a sequential P fractionation method. As they do not represent precise forms of specific discrete P compounds in the soil but rather resemble operational pools, we will now refer to them as P pools. In order to quantify the relative importance of 11 soil-forming variables in predicting soil P pool concentrations and then make further predictions at the global scale, we trained random forest regression models for each of the P pools and captured observed variation with R2 higher than 60 %. We identified total soil P concentration as the most important predictor of all soil P pool concentrations, except for primary mineral P concentration, which is primarily controlled by soil pH and only secondarily by total soil P concentration. When expressed in relative values (proportion of total P), the model showed that soil pH is generally the most important predictor for proportions of all soil P pools, alongside the prominent influences of soil organic carbon, total P concentration, soil depth, and biome. These results suggest that, while concentration values of P pools logically strongly depend on soil total P concentration, the relative values of the different pools are modulated by other soil properties and the environmental context. Using the trained random forest models, we predicted soil P pools' distributions in natural systems at a resolution of 0.5∘×0.5∘. Our global maps of different P pools in soils as well as the pools' underlying drivers can inform assessments of the role of natural P availability for ecosystem productivity, climate change mitigation, and the functioning of the Earth system.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3