Fast-response high-resolution temperature sonde aimed at contamination-free profile observations

Author:

Shimizu K.,Hasebe F.

Abstract

Abstract. An innovative temperature sonde, equipped with an ultra thin tungsten wire, has been developed to meet the scientific requirements suitable for climate change research. The response time, shorter than 40 ms achieved at the altitude of 30 km, enables the temperature observations with the radiation correction of less than 0.4 K in the whole observation range. Test flights during the development stage reveal significant artificial perturbations in the observed temperature profiles. They are identified as the thermal contamination arising primarily from radiosonde package box with some additional effect from the launching balloon. The modification of the sensor mount successfully removed the contribution from the former effect. On the other hand, some filtering procedure need to be applied to remove the latter, although the use of a long suspension line will be effective to reduce the noise. There remain unavoidable small fluctuations (less than 0.4 K) that are brought about by the solid angle modulation of the illumination against the sensor body in the daytime. While conventional radiation correction may unintentionally have taken a part of such contaminations into account, they may not be properly corrected in existing radiosonde data, as the origin of errors has not been identified. Our tungsten sonde that scarcely relies on the ambiguous correction procedures is ideal for serving as an international reference.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3