Comparison of inference methods of genetic parameters with an application to body weight in broilers

Author:

Maniatis G.,Demiris N.,Kranis A.,Banos G.,Kominakis A.

Abstract

Abstract. REML (restricted maximum likelihood) has become the standard method of variance component estimation in animal breeding. Inference in Bayesian animal models is typically based upon Markov chain Monte Carlo (MCMC) methods, which are generally flexible but time-consuming. Recently, a new Bayesian computational method, integrated nested Laplace approximation (INLA), has been introduced for making fast non-sampling-based Bayesian inference for hierarchical latent Gaussian models. This paper is concerned with the comparison of estimates provided by three representative programs (ASReml, WinBUGS and the R package AnimalINLA) of the corresponding methods (REML, MCMC and INLA), with a view to their applicability for the typical animal breeder. Gaussian and binary as well as simulated data were used to assess the relative efficiency of the methods. Analysis of 2319 records of body weight at 35 days of age from a broiler line suggested a purely additive animal model, in which the heritability estimates ranged from 0.31 to 0.34 for the Gaussian trait and from 0.19 to 0.36 for the binary trait, depending on the estimation method. Although in need of further development, AnimalINLA seems a fast program for Bayesian modeling, particularly suitable for the inference of Gaussian traits, while WinBUGS appeared to successfully accommodate a complicated structure between the random effects. However, ASReml remains the best practical choice for the serious animal breeder.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3