Foliage surface ozone deposition: a role for surface moisture?

Author:

Altimir N.,Kolari P.,Tuovinen J.-P.,Vesala T.,Bäck J.,Suni T.,Kulmala M.,Hari P.

Abstract

Abstract. This paper addresses the potential role of surface wetness in ozone deposition to plant foliage. We studied Scots pine foliage in field conditions at the SMEARII field measurement station in Finland. We used a combination of data from flux measurement at the shoot (enclosure) and canopy scale (eddy covariance), information from foliage surface wetness sensors, and a broad array of ancillary measurements such as radiation, precipitation, temperature, and relative humidity. Environmental conditions were defined as moist during rain or high relative humidity and during the subsequent twelve hours from such events, circumstances that were frequent at this boreal site. From the measured fluxes we estimated the ozone conductance using it as the expression of the strength of ozone removal surface sink or total deposition. Further, we estimated the stomatal contribution and the remaining deposition was interpreted and analysed as the non-stomatal sink. The combined time series of measurements showed that both shoot and canopy-scale ozone total deposition were enhanced when moist conditions occurred. On average, the estimated stomatal deposition accounted for half of the measured removal at the shoot scale and one third at the canopy scale. However, during dry conditions the estimated stomatal uptake predicted the behaviour of the measured deposition, but during moist conditions there was disagreement. The estimated non-stomatal sink was analysed against several environmental factors and the clearest connection was found with ambient relative humidity. The relationship disappeared under 70% relative humidity, a threshold that coincides with the value at which surface moisture gathers at the foliage surface according to the leaf surface wetness measurements. This suggests the non-stomatal ozone sink on the foliage to be modulated by the surface films. We attempted to extract such potential modulation with the estimated film formation via the theoretical expression of adsorption. Whereas this procedure could predict the behaviour of the non-stomatal sink, it implied a chemical sink that was not accountable as simple ozone decomposition. We discuss the existence of other mechanisms whose relevance in the removal of ozone needs to be clarified, in particular: a significant nocturnal stomatal aperture neglected in the estimations, and a potentially large chemical sink offered by reactive biogenic organic volatile compounds.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3