Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions

Author:

Bellouin NicolasORCID,Baker Laura,Hodnebrog Øivind,Olivié Dirk,Cherian Ribu,Macintosh Claire,Samset Bjørn,Esteve Anna,Aamaas BorgarORCID,Quaas JohannesORCID,Myhre GunnarORCID

Abstract

Abstract. Dedicated model simulations by four general circulation and chemistry-transport models are used to establish a matrix of specific radiative forcing, defined as the radiative forcing per unit change in mass emitted, as a function of the near-term climate forcer emitted, its source region, and the season of emission. Emissions of eight near-term climate forcers are reduced: sulphur dioxide, the precursor to sulphate aerosols; black carbon aerosols; organic carbon aerosols; ammonia, a precursor to nitrate aerosols; methane; and nitrogen oxides, carbon monoxide, and volatile organic compounds, the precursors to ozone and to secondary organic aerosols. The focus is on two source regions, Europe and East Asia, but the shipping sector and global averages are also included. Emission reductions are applied over two time periods: May–Oct and Nov–Apr. Models generally agree on the sign and ranking of specific radiative forcing for different emitted species, but disagree quantitatively. Black carbon aerosols, methane, and carbon monoxide exert positive specific radiative forcings. Black carbon exerts the strongest specific radiative forcing, even after accounting for rapid adjustments from the semi-direct effect, and is most efficient in local summer. However, although methane and carbon monoxide are less efficient in a specific sense, the potential for decreasing the mass emitted is larger. Organic carbon aerosols, sulphur dioxide, ammonia, and emissions by the shipping sector exert negative specific radiative forcings, with local summer emission changes being again more efficient. Ammonia is notable for its weak specific radiative forcing. For aerosols, specific radiative forcing exerted by European emissions is stronger than for East Asia, because the European baseline is less polluted. Radiative forcing of European and East Asian emission reductions is mainly exerted in the mid-latitudes of the Northern Hemisphere, but atmospheric transport yields sizeable radiative forcings in neighbouring regions, such as the Arctic. Models disagree on the sign of the net radiative forcing exerted by reductions in the emissions of nitrogen oxides and volatile organic compounds, because those reductions trigger complex changes in the oxidising capacity of the atmosphere, translating into radiative forcings by aerosols, methane, and ozone of different signs. The response of nitrate aerosols to nitrogen oxide reductions is particularly important in determining the sign of the corresponding radiative forcing. Model diversity comes from different modelled lifetimes, different unperturbed baselines, and different numbers of species and radiative forcing mechanisms represented. The strength of the aerosol-chemistry coupling is also diverse, translating into aerosol responses to perturbations of ozone precursors of different magnitudes.

Funder

European Commission

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3