Chemical aging of atmospheric mineral dust during transatlantic transport

Author:

Abdelkader MohamedORCID,Metzger SwenORCID,Steil Benedikt,Klingmüller KlausORCID,Tost HolgerORCID,Pozzer AndreaORCID,Stenchikov GeorgiyORCID,Barrie LeonardORCID,Lelieveld JosORCID

Abstract

Abstract. Transatlantic dust transport has many implications for the atmosphere, ocean and climate. We present a modeling study on the impact of the key processes (dust emissions flux, convection and dust aging parameterizations) that control the transatlantic dust transport. Typically, the Inter-Tropical Convergence Zone (ITCZ) acts as a barrier for the meridional dust transport. To characterize the dust outflow over the Atlantic Ocean, we address two regional phenomena: (i) dust interactions with the ITCZ (DIZ) and (ii) the adjacent dust transport over the Atlantic Ocean (DTA). In the DTA zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean where particle sedimentation is the dominant removal process, whereas in the DIZ zone cloud interactions and wet deposition predominate. To study the different impacts of aging, we present two case studies that exclude condensation and coagulation, and include dust aging at various levels of complexity. For dust aging, we consider the uptake of inorganic acids on the surface of mineral particles that form salt compounds. Calcium, used as a proxy for the overall chemically reactive dust fraction, drives the dust-related neutralization reactions leading to higher dust aerosol optical depth (AOD). The aged dust particles are transferred to the soluble aerosol modes in the model and are mixed with other species that originate from anthropogenic and natural sources. The neutralization products (salts) take up water vapor from the atmosphere and increase the dust AOD under subsaturated conditions. We define the "direct effect of dust aging" to refer to the increase in AOD as a result of hygroscopic growth. On the other hand, the aged dust is more efficiently removed (wet and dry) because of the increase in particle size and hygroscopicity. This more efficient removal reduces the dust AOD over the DIZ zone. We define this as the "indirect effect of dust aging", complementary to the direct effect that is dominant in the DTA zone. Distinction of the two aging effects helps develop insight into the regional importance of dust–air-pollution interactions.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3