Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): the ATLID FeatureMask (A-FM) product

Author:

van Zadelhoff Gerd-JanORCID,Donovan David P.,Wang Ping

Abstract

Abstract. The EarthCARE satellite mission's objective is to retrieve profiles of aerosol and cloud physical and optical properties using the combination of cloud-profiling radar (CPR), high-spectral-resolution UV lidar (ATLID) and passive multi-spectral imager (MSI) data. Based on synergistic retrievals using data from these instruments, the 3D atmospheric cloud–aerosol state is estimated and then used to model the top-of-atmosphere (TOA) broadband radiances, which may then be compared to co-incident EarthCARE broadband radiometer (BBR) measurements. A high-spectral-resolution lidar enables the independent retrieval of extinction and backscatter but, being space based, suffers from relatively low signal-to-noise ratio (SNR) levels. The ATLID FeatureMask (A-FM) product provides a feature detection mask for the existence of atmospheric features within the lidar profiles based on a number of (statistical) image reconstruction techniques. Next to this, it also identifies those regions where the lidar beam has been fully attenuated and where the surface backscatter has impacted the measured lidar backscatter signals directly above the surface. From the pixels assigned as clear sky (with no features present above), the clear-sky-averaged profiles for the three ATLID channels, the co-polar Mie channel, the total cross channel and the co-polar Rayleigh channel are created. These feature-free or clear-sky profiles are useful for e.g., assessing the quality of the ATLID Level-1 (L1) attenuated backscatters. An important goal of the A-FM product is to guide smoothing strategies within downstream processors e.g., the ATLID profile retrieval (A-PRO) algorithm which directly follows A-FM within the EarthCARE Level-2 (L2) processing chain. Within the A-PRO algorithm, profiles of extinction, backscatter and linear depolarization ratio are retrieved. However, smoothing of the ATLID L1 attenuated backscatter is necessary since the SNR levels present at the ATLID native resolution are generally not sufficient for meaningful retrievals to be conducted. At the same time, to prevent biased retrievals, any smoothing procedure must respect the cloud–aerosol structure and avoid mixing strong features, e.g., clouds, and weak features, e.g., aerosol regions, together. The A-FM product provides the A-PRO algorithm with important information that is used to guide various smoothing procedures. To enable the processing of the large datasets from observation up to L2 retrievals, each EarthCARE orbit is separated into eight frames, divided at latitudes of 22.5∘ N and 22.5∘ S and 62.5∘ N and 62.5∘ S. As a secondary product, A-FM outputs can be used to conduct a frame-by-frame evaluation of the ATLID L1 cross-talk calibration, where an EarthCARE frame is one-eighth of a full orbit. This evaluation can be performed by comparing the retrieved clear-sky profiles to the expected channel profiles. The A-FM product has been applied to both synthetic data from the EarthCARE end-to-end simulator (ECSIM) and the L1 data from the Aeolus wind lidar mission. Comparisons against the ECSIM model truth indicate that A-FM has a percentage correctness > 90 % and is capable of reliably detecting aerosol and cloud regions within extinctions (> 10−5 m−1).

Funder

European Space Agency

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3