Laser-induced sublimation extraction for centimeter-resolution multi-species greenhouse gas analysis on ice cores

Author:

Mächler Lars,Baggenstos DanielORCID,Krauss Florian,Schmitt JochenORCID,Bereiter BernhardORCID,Walther Remo,Reinhard Christoph,Tuzson BélaORCID,Emmenegger LukasORCID,Fischer HubertusORCID

Abstract

Abstract. Precision, accuracy, and temporal resolution are key to making full use of atmospheric trace gas records in ice cores. These aspects will become especially crucial for ice cores that aim to extend the ice core record to the last 1.5 Myr, i.e., across the Mid-Pleistocene Transition (as currently drilled within the European project Beyond EPICA – Oldest Ice Core (BE-OIC)). The ice from this period is expected to be close to bedrock and, due to glacier flow, extremely thinned with 15 000 years of climate history contained in only 1 m of ice. Accordingly, for a century-scale resolution, the sample vertical extent must be reduced to a few centimeters containing only about 1–2 mL air STP. We present a novel combined system for the extraction and the simultaneous measurement of CO2, CH4, and N2O concentrations, as well as δ13CO2, which achieves a vertical resolution of 1–2 cm (3.5×3.5 cm cross section) with precisions of 0.4 ppm, 3 ppb, 1 ppb, and 0.04 ‰, respectively, in sublimation tests with standard gas over gas-free ice. This is accomplished by employing a directional and continuous laser-induced sublimation followed by analysis of the sample gas by a quantum cascade laser absorption spectrometer (QCLAS). Besides the low sample volume requirements and the vertical resolution capabilities, the described method holds additional advantages over previous methods, including the immunity of the highly specific QCLAS analysis to drilling fluid contamination as well as the non-destructive nature of the spectroscopic gas analysis. The combined extraction and analysis system was extensively tested by sublimating gas-free ice with introduction of a standard gas to determine the accuracy and characterize potential artifacts. Moreover, Antarctic ice samples were measured to confirm the measurement performance, covering the range of variability expected in Pleistocene ice and highlighting the vertical resolution capabilities critical for its application within BE-OIC.

Funder

H2020 European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3