Particle inertial effects on radar Doppler spectra simulation

Author:

Zhu ZeenORCID,Kollias Pavlos,Yang FanORCID

Abstract

Abstract. Radar Doppler spectra observations provide a wealth of information about cloud and precipitation microphysics and dynamics. The interpretation of these measurements depends on our ability to simulate these observations accurately using a forward model. The effect of small-scale turbulence on the radar Doppler spectra shape has been traditionally treated by implementing the convolution process on the hydrometeor reflectivity spectrum and environmental turbulence. This approach assumes that all the particles in the radar sampling volume respond the same to turbulent-scale velocity fluctuations and neglects the particle inertial effect. Here, we investigate the inertial effects of liquid-phase particles on the forward modeled radar Doppler spectra. A physics-based simulation (PBS) is developed to demonstrate that big droplets, with large inertia, are unable to follow the rapid change of the velocity field in a turbulent environment. These findings are incorporated into a new radar Doppler spectra simulator. Comparison between the traditional and newly formulated radar Doppler spectra simulators indicates that the conventional simulator leads to an unrealistic broadening of the spectrum, especially in a strong turbulent environment. This study provides clear evidence to illustrate the droplet inertial effect on radar Doppler spectrum and develops a physics-based simulator framework to accurately emulate the Doppler spectrum for a given droplet size distribution (DSD) in a turbulence field. The proposed simulator has various potential applications for the cloud and precipitation studies, and it provides a valuable tool to decode the cloud microphysical and dynamical properties from Doppler radar observation.

Funder

Brookhaven National Laboratory

U.S. Department of Energy

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3