Analysis of 2D airglow imager data with respect to dynamics using machine learning
-
Published:2023-06-26
Issue:12
Volume:16
Page:3141-3153
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Sedlak RenéORCID, Welscher Andreas, Hannawald Patrick, Wüst SabineORCID, Lienhart RainerORCID, Bittner Michael
Abstract
Abstract. We demonstrate how machine learning can be easily applied
to support the analysis of large quantities of excited hydroxyl (OH*) airglow imager data. We use
a TCN (temporal convolutional network) classification algorithm to
automatically pre-sort images into the three categories “dynamic” (images
where small-scale motions like turbulence are likely to be found), “calm”
(clear-sky images with weak airglow variations) and “cloudy” (cloudy images
where no airglow analyses can be performed). The proposed approach is
demonstrated using image data of FAIM 3 (Fast Airglow IMager), acquired at
Oberpfaffenhofen, Germany, between 11 June 2019 and 25 February 2020,
achieving a mean average precision of 0.82 in image classification. The
attached video sequence demonstrates the classification abilities of the
learned TCN. Within the dynamic category, we find a subset of 13 episodes of image
series showing turbulence. As FAIM 3 exhibits a high spatial
(23 m per pixel) and temporal (2.8 s per image) resolution, turbulence
parameters can be derived to estimate the energy diffusion rate. Similarly to
the results the authors found for another FAIM station (Sedlak et al.,
2021), the values of the energy dissipation rate range from 0.03 to
3.18 W kg−1.
Funder
Bayerisches Staatsministerium für Umwelt und Verbraucherschutz
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference40 articles.
1. Bai, S., Kolter, J. Z., and Koltun, V.: An Empirical Evaluation of Generic
Convolutional and Recurrent Networks for Sequence Modeling, arXiv [preprint],
https://arxiv.org/abs/1803.01271 (last access: 21 June 2023), 2018. 2. Chau, J. L., Urco, J. M., Avsarkisov, V., Vierinen, J. P., Latteck, R.,
Hall, C. M., and Tsutsumi, M.: Four-Dimensional Quantification of
Kelvin-Helmholtz Instabilities in the Polar Summer Mesosphere Using
Volumetric Radar Imaging, Geophys. Ress. Let., 47, e2019GL086081,
https://doi.org/10.1029/2019GL086081, 2020. 3. Fujiyoshi, H., Hirakawa, T., and Yamashita, T.: Deep learning-based image
recognition for autonomous driving, IATSS Research, 43, 244–252,
https://doi.org/10.1016/j.iatssr.2019.11.008, 2019. 4. Gargett, A. E.: Velcro Measurement of Turbulence Kinetic Energy Dissipation
Rate ϵ, J. Atmos. Ocean. Tech., 16, 1973–1993, 1999. 5. Guo, Z.-X., Yang, J.-Y., Dunlop, M. W., Cao, J.-B., Li, L.-Y., Ma, Y.-D.,
Ji, K.-F., Xiong, C., Li, J., and Ding, W.-T.: Automatic classification of
mesoscale auroral forms using convolutional neural networks, J. Atmos. Terr.
Phys., 235, 105906, https://doi.org/10.1016/j.jastp.2022.105906, 2022.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|